

¹⁵⁵Tb production: a proof-of-concept method for an alternative production of medical isotope COIRS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

ES Université Paris Cité

TTRIP (Tools for Tb RadioIsotope Production for nuclear medicine)

- Internal vectorized radiotherapy (RIV): a brief reminder
- Project on radio-isotope production and vectorization
 - \rightarrow radio-isotope production
 - → use of electromagnetic separation to improve the isotopic purification
 - \rightarrow first results
- Outlook and conclusions

 \rightarrow deliver energy into tumors

└→ damage the DNA cancer cells

 \rightarrow destroy their ability to divide and grow

Radiotherapy

→ limit damages to surrounding healthy tissues

Internal Vectorized Radiotherapy

cnrs

→ **introduction** of a radioactive therapeutic agent into the body **in direct contact with the tumour**

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Université Paris Cité

Internal Vectorized Radiotherapy « strategy » ons

PARIS-SACLAY

Université Paris Cité

THERAPY

 \rightarrow Optimize tumour treatment

radioisotope adapted to tumour size and geometry

decaying mode energy of emitted radiation

adapted linear energy transfer (LET)

radiation path

 \rightarrow Adapt to the bio-distribution time of the vector choice of radioactive period (T_{1/2})

β^{-} emitter	lpha emitter	conversion e	Auger e ⁻	
∼ 500 – 2500 keV	∼ 4000 – 9000 keV	∼ 10 – 200 keV	∼ 0,5 – 5 keV	
~ 0,2 keV/µm	~ 50-200 keV/μm	~ 0,5 keV/µm	∼ 1 - 23 keV/µm	
5 – 150 cells	1 – 3 cells	∼ 10 cells	< 1 cell	
µm à qq cm	40-100 μm	0,5 mm	1 nm - 1 µm	
⁹⁰ Y, ¹⁷⁷ Lu, ¹⁵³ Sm, ¹³¹ I	²¹¹ At, ²¹² Bi, ²¹³ Bi, ²²⁵ Ac, ²¹² Pb, ²²³ Ra, ¹⁴⁹ Tb	¹¹¹ In, ⁶⁷ Ga, ^{195m} Pt, ¹²³ I, ¹²⁵ I		

Internal Vectorized Radiotherapy « strategy » Cors

PACULTÉ UNIVERSITE PARIS-SACLAY D'ORSAY

Université Paris Cité

THERAPY

radioisotope adapted to tumour size and geometry

decaying mode energy of emitted radiation adapted linear energy transfer (LET) radiation path

- \rightarrow Adapt to the bio-distribution time of the vector choice of radioactive period (T_{1/2})
 - ightarrow deliver the right dose at the right place
 - ightarrow avoid unnecessary doses

	β^{-} emitter	lpha emitter	conversion e ⁻	Auger e ⁻	
∼ 500 – 2500 ke\		∼ 4000 – 9000 keV	∼ 10 – 200 keV	∼ 0,5 – 5 keV	
	~ 0,2 keV/µm	~ 50-200 keV/μm	~ 0,5 keV/µm	∼ 1 - 23 keV/µm	
	5 – 150 cells	1 – 3 cells	∼ 10 cells	< 1 cell	
	μm à qq cm	40-100 μm	0,5 mm	1 nm - 1 µm	
-	⁹⁰ Y, ¹⁷⁷ Lu, ¹⁵³ Sm, ¹³¹ I	²¹¹ At, ²¹² Bi, ²¹³ Bi, ²²⁵ Ac, ²¹² Pb, ²²³ Ra, ¹⁴⁹ Tb	¹¹¹ ln, ⁶⁷ Ga, ^{195m} Pt, ¹²³ l, ¹²⁵ l		

- IMAGING : Personalize treatment
- ightarrow better target the tumour
- ightarrow better estimate of the dose to be injected

SPECT Single Photon Emission Computed Tomography

PET Positron Emission Tomography

low energy γ emitter ^{99m}Tc, ¹²³l

positron emitter (β⁺) ¹⁵O, ¹³N, ¹¹C, ¹⁸F

└→ Identical bio-kinetic and pharmaco-kinetic

 \rightarrow non targeted **tissues** (secondary effects)

«GANIL Colloque GANIL 2023» - 25-29/09/2023 - C.-O.Bacri

└→ Identical bio-kinetic and pharmaco-kinetic

- \rightarrow targeted **lesion** (therapeutic effects)
- \rightarrow non targeted **tissues** (secondary effects)

toward more personalised treatment

Medical cyclotron production

¹⁵⁹Tb(p,5n)¹⁵⁵Dy(ε)¹⁵⁵Tb **155**Gd(p,n)¹⁵⁵Tb ¹⁵⁵Gd(d,2n)¹⁵⁵Tb ¹⁵²Sm(⁷Li,4n)¹⁵⁵Tb ^{nat}Dy(d,x)¹⁵⁵Tb(cum) cyclotron based studied are mostly with ^{nat}Gd or commercial ^{enr. 155}Gd

	¹⁵² Gd	¹⁵⁴ Gd	155 Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd
^{nat} Gd	0,2 %	2,18 %	14,8 %	20,47 %	15,65 %	24,84 %	21,86 %
commercial ^{enr. 155} Gd			92,8 %	5,7 %	0,8 %	0,5 %	0,2 %

C. Vermeulen et al., Nucl. Inst. Meth. B 2012, 275, 24-32

«GANIL Colloque GANIL 2023» - 25-29/09/2023 - C.-O.Bacri

Tb-155 production: a proof-of-concept method

13

should make possible to achieve the necessary purity

TTRIP (Tools for Tb RadioIsotope Production for nuclear medicine) CDLS ANR-21-CE19-0037

FACULTÉ • FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Université Paris Cité

Terbium 's family: swiss knife of nuclear medicine

¹⁴⁹Tb ($T_{1/2}$ = 4.12 h, α therapy - 3.97 MeV) ¹⁵²Tb (T_{1/2} = 17.5 h, PET 1140 keV) ¹⁵⁵Tb ($T_{1/2}$ = 5.32 d, SPECT and Auger therapy) ¹⁶¹Tb ($T_{1/2}$ = 6.9 d, β^- therapy 154 keV and Auger therapy)

PRODUCTION OPTIMIZATION OF A MOLECULE BIO-LABELED WITH ¹⁵⁵TB

Usual production methods are not always adapted to a large scale regular production of pure radioisotopes

¹⁵⁵**Tb** : optimization of the production \rightarrow M.Bouteculet PhD thesis (IJCLab)

Pure ¹⁵⁵Gd production (SIDONIE separator)

4.4

- Excitation function measurement of ¹⁵⁵Gd(p,n)¹⁵⁵Tb
- Recovery of other Gd isotopes (¹⁵²Gd for ^{149, 152}Tb production, ¹⁵⁴Gd for ¹⁵²Tb production, ¹⁶⁰Gd for ¹⁶¹Tb production)
- Quantify the effect of contaminant onto the image quality performed with ¹⁵⁵Tb

«GANIL Collogue GANI

chelating agent

Peptide,

antibody, ...

TTRIP (Tools for Tb Radiolsotope Production for nuclear medicine) COTS UNIVERANDE-21-CE19-0037

FACULTÉ
DES SCIENCES
PARIS-SACLAY
D'ORSAY

Université Paris Cité

Terbium 's family: swiss knife of nuclear medicine

¹⁴⁹Tb ($T_{1/2}$ = 4.12 h, α therapy - 3.97 MeV) ¹⁵²Tb ($T_{1/2}$ = 17.5 h, PET 1140 keV) ¹⁵⁵Tb ($T_{1/2}$ = 5.32 d, SPECT and Auger therapy) ¹⁶¹Tb ($T_{1/2}$ = 6.9 d, β^- therapy 154 keV and Auger therapy)

PRODUCTION OPTIMIZATION OF A MOLECULE BIO-LABELED WITH ¹⁵⁵TB

Usual production methods are not always adapted to a large scale regular production of pure radioisotopes

¹⁵⁵**Tb** : optimization of the production \rightarrow M.Bouteculet PhD thesis (IJCLab)

- Pure ¹⁵⁵Gd production (SIDONIE separator)
- Excitation function measurement of ¹⁵⁵Gd(p,n)¹⁵⁵Tb
- Recovery of other Gd isotopes (¹⁵²Gd for ^{149, 152}Tb production, ¹⁵⁴Gd for ¹⁵²Tb production, ¹⁶⁰Gd for ¹⁶¹Tb production)
- Quantify the effect of contaminant onto the image quality performed with ¹⁵⁵Tb

Bioconjugate radiolabelling (like DOTA) with metals needs high temperature heating (> 80°C) to accelerate complexation ⇒ protein vectorisation « excluded » (denaturation)

Chemistry to explore Tb chelation

- Conception and synthesis of new model of Tb³⁺ chelators.
- Structural, thermodynamical and kinetic studies of chelators and their metallic complexes.
- Cytotoxicity of Tb
- Bioconjugation of functionalised chelators

→ S.Lam PhD thesis (IJCLab + IRSN)

First ¹⁵⁵Gd targets with SIDONIE

Laboratoire de Physique des 2 Infinis

6 SIDONIE targets currently available

A	¹⁵² Gd (%)	¹⁵⁴ Gd (%)	¹⁵⁵ Gd (%)	¹⁵⁶ Gd (%)	¹⁵⁷ Gd (%)	¹⁵⁸ Gd (%)	¹⁶⁰ Gd (%)	
a la	0.2	2.18	14.8	20.47	15.65	24.84	21.86	^{nat} Gd
2	4.309 E-04	1.250E-03	99.9817	5.689E-03	5.329E-03	3.929E-03	1.640E-03	

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

cnrs

Université Paris Cité

262,3 keV | I = 5,3 %

EC

main γ rays

534,3 keV

1065,1 keV

1154,1 keV

1222,4 keV

1421,7 keV

I = 67 %

I = 10.8 %

I = 10,4 %

I = 31 %

|| = 12 / 6

«GANIL Colloque GANIL 2023» - 25-29/09/2023 - C.-O.Bacri

«GANIL Colloque GANIL 2023» - 25-29/09/2023 - C.-O.Bacri

Outlook and conclusions

- Alternative method production with cyclotron of ¹⁵⁵Tb proposed
 - > first pure targets produced: 155 Gd/ Σ Gd > 99,9 %
 - « test experiment » at 30 MeV
 - \rightarrow development/validation of the methodology
 - \rightarrow highlighted unavoidable pollution of ¹⁵⁶Tb
 - Measurement for excitation function of ¹⁵⁵Gd(p,n)¹⁵⁵Tb (~10 MeV 30 MeV) optimization production rate % purity
 - next experiment on october (NPI @ ReZ)
 - foreseen experiments @ IPHC, Strasbourg
 - possible at NFS but planning not optimal ...
 - Project of imaging with mixture ¹⁵⁵Tb + ¹⁵⁶Tb (coll. CHUV, Lausanne)

 - ... ¹⁵⁵Tb production « recipe » : \rightarrow M.Bouteculet PhD Aug.-Sept. 2025 \rightarrow dec. 2025; end of ANR TTRIP

WHAT

NEXT?

FACULTE
FACULTE
DES SCIENCES
DUNIVERSITE
DORSAY

Université Paris Cité

and

J.Marzek NPI, ReZ CHUV team (Lausanne)

«GANIL Colloque GANIL 2023» - 25-29/09/2023 - C.-O.Bacri