

Etched Ion-track grafting for water pollution detection

M-C. Clochard

Laboratoire des Solides Irradiés CNRS-CEA-Ecole Polytechnique UMR7642 Institut Polytechnique de Paris 91120 Palaiseau Cedex, France

Location: « Ecole Polytechnique » Engineer School

South of Paris region Plateau de Saclay (5 km from CEA-Saclay site)

Irradiated Solid Laboratory

Context and challenges

<u>Toxic metals of interest</u>: Hg, Cd, Pb, As, Cr, Co, Ni, Cu, Zn, Sb, Se, UO2(II)

European legislation on toxic metals

Need for ultra-sensitive devices for analysis, onsite and robust to prevent in real time environmental disasters

OSPAR regulation

for sea	μg/L	
	Arsenic	60
	Nickel	860
Metals	Cadmium	21
	Chromium	60
	Copper	260
	Mercury	4,7
	Lead	130
	Zinc	300

Tolerables limits are few μ g/L (or ppb) to hundred

Scientific Reports (**2020**) 10:5776 Reactive and Functional Polymers 142 (**2019**) 77–86 Journal of Hazardous Materials 376 (**2019**) 37–47

Detected ions (few tenths of ppb range): Pb, Cu, Ni, Co, Hg, UO₂, Mo, Sb, Se, As, Cd, Cr(VI), Zn

Patented technology

Membrane-electrode fabrication

Nanostructuration by Swift Heavy Ions Irradiation and track-etching

10MeV/mau

Nanostructuration by Swift Heavy Ions Irradiation and track-etching

High LET effects and modifications of polymers using swift heavy ions*

Calculated track formed by the passage of a 5 MeV He²⁺ ion in polyethylene (Gervais and Bouffard, 1995).

Radiation Physics and Chemistry 142 (2018) 54-59

* Ferry, M.N.; Ngono-Ravache, Y.; Aymes-Chodur, C.; Clochard, M.C.; Coqueret, X.; Cortella, L.; Pellizzi, E.; Rouif, S.; Esnouf, S. "Ionizing radiation effects in polymers". In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Oxford, UK, **2016**; pp. 131–149.

Nanopores characterization

- Reflections on pore walls 1) (Porod's behaviour): $I \propto 1/q^4$
- 2) Pore radii r Periodic Modulations of the signal by Bessel function: $J_1(qr)$

SANS gives also information on pore rugosity

 $P_a(r)$ is gaussian of average value r_0 and its standard deviation

$$P(q) = \left(\int p_a(r)r^2 \frac{2J_1(qr)}{qr}dr\right)^2$$

Angle deviation $\boldsymbol{\phi}$ of the pores

Confocal Laser Scanning Microscopy of a track-etched PVDF membrane (5x10⁶ cm⁻²)

Mean deviation σ_{ϕ} = 0.023rd

Membrane-electrode fabrication

Induced radicals + functionalization by radical polymerization

EPR spectra of 9μm 8-PVDF films irradiated by (left) e-beam (1.25 MGy) from [41]; (right) Swift Heavy Ions (krypton of 10MeV/mau, fluence of 10¹⁰ cm⁻² corresponding to 76 kGy) and e-beam (50 kGy)

Radical	$-CH_2-CFOO^{\bullet}-CH_2-$	$-CF_2-C^{\bullet}H-CF_2$	$-CF_2 - C^{\bullet}H_2$
g-value	$g_{\parallel} = 2.0327, g_{\perp} = 2.009$	$g_{iso} = 2.004$	$g_{iso} = 2.009$
ΔB_{pp} [Gauss]	$\Delta B_{pp}^{\parallel} = 20, \ \Delta B_{pp}^{\perp} = 18$	$\Delta B_{pp} = 33$	$\Delta B_{pp} = 12$
A [Gauss]	_	$A_F = 43, A_H = 23$	$A_H = 16$

g-values of common radiation-induced radical species in PVDF

Radio-induced polymerization reactions occurring (so-called radio grating) inside nanopores

Review : Aiysha Ashfaq et al. Polymers 2020, 12, 2877

Remaining radical fraction profile per track

Poly(acrylic acid)-grafted-PVDF membrane

Small Angle Neutron Scattering (SANS) spectra obtained at LLB CEA Saclay, France (PACE spectrometer) for track-etched PVDF membranes exhibiting nanopores of 50 nm of initial radius (light green circles)

Ceaa Interview of the second s

Small Angle Neutron Scattering (SANS) spectra obtained at LLB CEA Saclay, France (PACE spectrometer) for track-etched PVDF membranes exhibiting nanopores of 50 nm of initial radius (light green circles)

Small Angle Neutron Scattering (SANS) spectra obtained at LLB CEA Saclay, France (PACE spectrometer) for track-etched PVDF membranes exhibiting nanopores of 50 nm of initial radius (light green circles)

Small Angle Neutron Scattering (SANS) spectra obtained at LLB CEA Saclay, France (PACE spectrometer) for track-etched PVDF membranes exhibiting nanopores of 50 nm of initial radius (light green circles)

Review : Aiysha Ashfaq et al. Polymers 2020, 12, 2877

Zn adsorption in PAA-grafted-PVDF membrane nanopores by XPS

Electrostatic interaction

Zn adsorption capacity of PAA-grafted-PVDF nanoporous membrane

Membrane-electrode fabrication

Gold sputtering: changeover into electrodes

Anodic Stripping Voltammetry detection of adsorbed Zn(II)

Raw production Water Electrochemical Analysis

Electrode	Technique - <i>In-situ</i> or on-site solution	Deposition time	Linear range $(\mu g.L^{-1})$	$\begin{array}{c} \text{LOD} \\ (\mu \text{g.L}^{-1}) \end{array}$	Refs
Hg based electrode	SWASV - Voltammetric <i>in-situ</i> submersible profiler	300s at -0.75V and 180s at -0.35V	0.1-10	0.002	[18], [23]
Vibrating gold microwire	SWASV - <i>ex-situ</i> measurements with <i>in-situ</i> potentiality	300s at -0.9V	0.065-6.5	0.02	[19]
Liquid crystal Bismuth film	SWASV - flexible sensors array attached to automnous kayak	180s at -1.6V	0.3-70	0.08	[24]
Poly(sodium 4- styrenesulfonate wrinkled rGO composite	DPASV - <i>ex-situ</i> measurements	300s at -1.4V	0.3-50	0.1	[20]
Thin nanoporous gold disk sputtered onto PAA-g-PVDF membranes	SWASV - on-site solution with submersible probe for <i>in-situ sampling</i>	150s at -1.2V	10-500 (100-1000 linear-log fitting)	4.2	this work

- [18] Tercier M.L., Buffle J., Zirino A., Vitre R.Rd., In-situ voltammetric measurement of trace elements in lakes and oceans. *Anal. Chem. Acta* 237 429-437 (1990).
- [19] Gibbon-Walsh, K., Salaun, P., Van den Berg, C.M.G. Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode. *Environ. Chem.* 8, 475-484 (2011).

[20] Ma, S., Wei, H., Pan, D., Pan, F., Wang, C., Kang, G. Voltammetric Determination of trace Zn(II) in seawater on a poly(sodium 4styrenesulfonate)/wrinkled reduced graphene oxide composite modified electrode. *Journal of The Electrochemical Society* 167, 046519 (2020).

[23] Tercier-Waeber M.L., Buffle J., Graziottin F., A novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters. *Electroanal.* **10** 355-363 (1998).

[24] Wang N., Kanhere E., Kottapalli A.G.P., Miao M.S., Triantafyllou M.S., Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of Zinc(II) in seawater. *Microchim. Acta* 184 3007-3015 (2017).

Electrode	Technique - <i>In-situ</i> or on-site solution	$\begin{array}{llllllllllllllllllllllllllllllllllll$		$\begin{array}{c} \text{LOD} \\ (\mu \text{g.L}^{-1}) \end{array}$	Refs
Hg based electrode	SWASV - Voltammetric <i>in-situ</i> submersible profiler	300s at -0.75V and 180s at -0.35V	0.1-10	0.002	[18], [23]
Vibrating gold microwire	SWASV - <i>ex-situ</i> measurements with <i>in-situ</i> potentiality	300s at -0.9V	0.065-6.5	0.02	[19]
Liquid crystal Bismuth film	SWASV - flexible sensors array attached to automnous kayak	180s at -1.6V	0.3-70	0.08	[24]
Poly(sodium 4- styrenesulfonate wrinkled rGO composite	DPASV - <i>ex-situ</i> measurements e)	300s at -1.4V	0.3-50	0.1	[20]
Thin nanoporous gold disk sputtered onto PAA-g-PVDF membranes	SWASV - on-site solution with submersible probe for <i>in-situ sampling</i>	150s at -1.2V	10-500 (100-1000 linear-log fitting)	(4.2)	this work

. CAPTÔT sensors are less sensitive

- [18] Tercier M.L., Buffle J., Zirino A., Vitre R.Rd., In-situ voltammetric measurement of trace elements in lakes and oceans. *Anal. Chem. Acta* 237 429-437 (1990).
 - [19] Gibbon-Walsh, K., Salaun, P., Van den Berg, C.M.G. Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode. *Environ. Chem.* 8, 475-484 (2011).

[20] Ma, S., Wei, H., Pan, D., Pan, F., Wang, C., Kang, G. Voltammetric Determination of trace Zn(II) in seawater on a poly(sodium 4-styrenesulfonate)/wrinkled reduced graphene oxide composite modified electrode. Journal of The Electrochemical Society 167, 046519 (2020).

- [23] Tercier-Waeber M.L., Buffle J., Graziottin F., A novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters. *Electroanal.* **10** 355-363 (1998).
- [24] Wang N., Kanhere E., Kottapalli A.G.P., Miao M.S., Triantafyllou M.S., Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of Zinc(II) in seawater. *Microchim. Acta* 184 3007-3015 (2017).

Electrode	Technique - <i>In-situ</i> or on-site solution	Deposition time	Linear range $(\mu g.L^{-1})$	$\begin{array}{l} \text{LOD} \\ (\mu \text{g.L}^{-1}) \end{array}$	Refs
Hg based electrode	SWASV - Voltammetric <i>in-situ</i> submersible profiler	300s at -0.75V and 180s at -0.35V	0.1-10	0.002	[18], [23]
Vibrating gold microwire	SWASV - <i>ex-situ</i> measurements with <i>in-situ</i> potentiality	300s at -0.9V	0.065-6.5	0.02	[19]
Liquid crystal Bismuth film	SWASV - flexible sensors array attached to automnous kayak	180s at -1.6V	0.3-70	0.08	[24]
Poly(sodium 4- styrenesulfonate wrinkled rGO composite	DPASV - <i>ex-situ</i> measurements e)	300s at -1.4V	0.3-50	0.1	[20]
Thin nanoporous gold disk sputtered onto PAA-g-PVDF membranes	SWASV - on-site solution with submersible probe for <i>in-situ sampling</i>	150s at -1.2V	10-500 (100-1000 linear-log fitting)	(4.2)	this work

- . CAPTÔT sensors are less sensitive
- . However our system allows to exploit a larger range of concentration and respond to OSPAR regulation

- [18] Tercier M.L., Buffle J., Zirino A., Vitre R.Rd., In-situ voltammetric measurement of trace elements in lakes and oceans. *Anal. Chem. Acta* 237 429-437 (1990).
 - [19] Gibbon-Walsh, K., Salaun, P., Van den Berg, C.M.G. Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode. *Environ. Chem.* 8, 475-484 (2011).

[20] Ma, S., Wei, H., Pan, D., Pan, F., Wang, C., Kang, G. Voltammetric Determination of trace Zn(II) in seawater on a poly(sodium 4-styrenesulfonate)/wrinkled reduced graphene oxide composite modified electrode. Journal of The Electrochemical Society 167, 046519 (2020).

- [23] Tercier-Waeber M.L., Buffle J., Graziottin F., A novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters. *Electroanal.* **10** 355-363 (1998).
- [24] Wang N., Kanhere E., Kottapalli A.G.P., Miao M.S., Triantafyllou M.S., Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of Zinc(II) in seawater. *Microchim. Acta* 184 3007-3015 (2017).

Electrode Hg based electrode	Technique - <i>In-situ</i> or on-site solution SWASV - Voltammetric <i>in-situ</i> submersible profiler	Deposition time 300s at -0.75V and 180s at -0.35V	Linear range $(\mu g.L^{-1})$ 0.1-10	$\begin{array}{c} \text{LOD} \\ (\mu \text{g.L}^{-1}) \end{array}$ 0.002	Refs [18], [23]	 CAPTÔT sensors are less sensitive However our system allows to exploit a larger range of concen- tration and respond to OSPAR regulation
Vibrating gold microwire Liquid crystal	SWASV - <i>ex-situ</i> measurements with <i>in-situ</i> potentiality SWASV - flexible	300s at -0.9V 180s at	0.065-6.5 0.3-70	0.02	[19] [24]	 None of others techniques : - can alert on pollution event - were confronted to oil polluted
Bismuth film	sensors array attached to automnous kayak	-1.6V				seawater samples
Poly(sodium 4- styrenesulfonate	DPASV - <i>ex-situ</i> measurements)	300s at -1.4V	0.3-50	0.1	[20]	[18] Tercier M.L., Buffle J., Zirino A., Vitre R.Rd., In-situ voltammetric mea- surement of trace elements in lakes and oceans. <i>Anal. Chem. Acta</i> 237 429-437 (1990).
wrinkled rGO composite	~~~~			\bigcirc		[19] Gibbon-Walsh, K., Salaun, P., Van den Berg, C.M.G. Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode. <i>Environ. Chem.</i> 8, 475-484 (2011).
Thin nanoporous gold disk sputtered onto	SWASV - on-site solution with submersible probe for <i>in-situ sampling</i>	150s at -1.2V	10-500 (100-1000 linear-log fitting)	4.2	this work	[20] Ma, S., Wei, H., Pan, D., Pan, F., Wang, C., Kang, G. Voltam- metric Determination of trace Zn(II) in seawater on a poly(sodium 4- styrenesulfonate)/wrinkled reduced graphene oxide composite modified electrode. <i>Journal of The Electrochemical Society</i> 167, 046519 (2020).
PAA-g-PVDF membranes			Ŭ			 [23] Tercier-Waeber M.L., Buffle J., Graziottin F., A novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters. <i>Electroanal.</i> 10 355-363 (1998). [24] W. C. K. K.

[24] Wang N., Kanhere E., Kottapalli A.G.P., Miao M.S., Triantafyllou M.S., Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of Zinc(II) in seawater. *Microchim. Acta* 184 3007-3015 (2017).

scientific reports

Check for updates

OPEN Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode

M.-C. Clochard¹¹², O. Oral¹, T. L. Wade¹, O. Cavani¹, M. Castellino², L. Medina Ligiero³ & T. Elan³

- 1. Laboratoire des Solides Irradiés, CNRS-CEA-Ecole Polytechnique, UMR7642, Institut Polytechnique de Paris, 91120 Palaiseau Cedex, France
- 2. Department of Applied Science and Technology (DISAT), Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129, Torino, Italy
- 3. TotalEnergies, PERL, Lacq, 64000 Pau, France

Limits of detection in deionized water

*Pinaeva et al. Journal of Hazardous Materials 376 (2019) 37–47 **Bessbousse et al Anal. Methods, 2011, 3, 1351 ***Pinaeva et al Reactive and Functional Polymers 142 (2019) 77–86

Thank you all for your attention

Acknowledgements

Fundings

International irradiation and neutrons falicities

Industrial partners for prototyping

Academic partner

CAPTÔT

Protecting water starts with knowing it

