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The Standard Model
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The Standard Model

SU3) X Sx) x U(1) ”h
gauge symmetries ‘ ’
(but we've known for some

time that the SU(2) is broken)



The Standard Model

SU(3) X Sx) X U(1) ”Q

gauge symmetries

...and so far the Higgs Boson
appears to be aoing the job



The Standard Model
the Electroweak sector is not the
only place where the Higgs Boson
IS “breaking” this flat picture...
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the Electroweak sector is not the
only place where the Higgs Boson
IS “breaking” this flat picture...

several orders of magnitude
difference between fermion
generations

mass ~ coupling to Higgs Boson



ATLAS have performed measurements
and searches in ~all feasible Higgs
production and decay modes.



So far there is no evidence of
observed masses and Yukawa
couplings deviating from expectation.
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something beyond the
Standard Model must instigate
this non-trivial structure.




N this discussion we will focus on two measurements of LHC data: those of
m, and A,,,, and, crucially, how we are working to improve them.



N this discussion we will focus on two measurements of LHC data: those of
and 4,,,, and, crucially, how we are working to improve them.

o under the assumption that the Yukawa coupling gy <> m,, measuring mi, is
the most precise way to pin down the top <> Higgs coupling.

* since the top-Yukawa coupling is of order unity, its implications are
enormous for Higgs phenomenology.




our knowledge of m, one limiting

factor in determining if the
electroweak vacuum Is stable.

1

NB: this assumes a SM shape of
the Higgs field potential.
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N this discussion we will focus on two measurements of LHC data: those of
m, and . and, crucially, how we are working to improve them.

. the Higgs boson self-coupling 4,,, controls the shape of Higgs potential!

e the running of this coupling to high energy scales also has implications on
the (meta) stability of Nature.

Higgs
potential

arxXiv 2104.06821
Bass, Do Roeck, Kado

Higgs field




N this discussion we will focus on two measurements of LHC data: those of
m, and . and, crucially, how we are working to improve them.

. the Higgs boson self-coupling 4,,, controls the shape of Higgs potential!

e the running of this coupling to high energy scales also has implications on
the (meta) stability of Nature.




how do we measure these quantities at the LHC?



experimental signatures

~ 100 %
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'Jet calorimeter
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experimental signatures

~ 100 %

b-hadron
decay é .

'Jet calorimeter
clusters

the LHC is a hadron collider:
there IS an enormous
background of particle jets
without b-hadrons.

identification of b-jets is key.



measuring the Higgs self-coupling, 4,,,



the most promising way to probe
the Higgs self-coupling at the
LHC is through measuring Higgs
pair production.

Ky = &x/ g)§M



the most promising way to probe
the Higgs self-coupling at the
LHC is through measuring Higgs
pair production.

but there are confounding
factors: e.q. strong (negative)
Interference with other production
diagrams.

Ky = gX/é’;M
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ATLAS have made outstanding
progress in the last years to get the
exclusion limits down to ~3x the
Standard Model hh cross section!
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we have very nearly ruled out
k, = 0 (no self-coupling).

small, positive values of K,
remain elusive:

very large negative
interference with box diagram!
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ATLAS + CMS may rule out k; = 0 with a Run 2 combination,
but we will still be far from observing hh production.



using current analysis strategies
and uncertainties, we will not

~
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observe hh production even at ATLAS Preliminary
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using current analysis strategies
and uncertainties, we will not

~

. L
observe hh production even at ATLAS Preliminary

the high-luminosity LHC.
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what can we do to improve this
search already in fun 3 In

Asimov data (k) = 1)

4
preparation for HL-LHC?
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systematically limited...



L HC collisions occur at ~40 MHz

* 40-60 collisions per crossing of proton e
bunches

e we cannot afford to write all of these
data to disk!

e the ATLAS trigger system
e ~100 kHz: hardware-based “Level 1°

 ~3 kHz: software-based "High Level
Trigger”

 hh production is allocated about 150 Hz
of write-out rate in Run 3.
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Simulated Z — uu event

.M the most expensive part in Run 3:
)~ event-wide charged-patrticle
tracking:
~1.5s per event!




Simulated Z — uu event

.M the most expensive part in Run 3:
)~ event-wide charged-patrticle
tracking:
~1.5s per event!

even with tens of thousands of
CPUs in the HLT “farm’,

we can only afford ~2 kHz of
tracking rate for our hh triggers.

but for ~75% efficiency, incoming
rate 1s ~10 kHz.




b-hadron
decay |

'‘h-jet”

calorimeter
clusters

b-jet identification is the main
handle we have vs backgrounds

but usually it requires full-event
tracking, primary vertex finding,
etc.

ATLAS recently developed very
fast b-tagging algorithms
designed specifically to run
before event-wide tracking.



1) only reconstruct tracks inside jets

2) do not construct the primary vertex
but look at track impact parameters
w.r.t. the beamspot

3) use a modern machine-learning
architecture (Deep Sets) to derive a
flexible identification algorithm
vs light-flavor jets

beam line
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tracking only inside jets
results in about a 4x
speed-up in CPU time.

we reduce the background

event rate from
~8 kHz to ~1.5 kHz

and maintain a 98%
hh — 4b efficiency.

(more efficient than just
identifying the correct
primary vertex!)



o after this reduction in rate, we are
capable of running conventional

e event-wide tracking

. and b-jet identification algorithms.

e pbut we gained an enormous amount of

flexibility:

. several available b-taggers running

at different stages of the HLT with
different CPU usage and
background rejections
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the impact on the search for hh
IS quite Striking:

in Run 3 we are writing ~50%
more hh — 4b events to disk

than we did in Run 2!
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the impact on the search for hh
IS quite Striking:

in Run 3 we are writing ~50%
more hh — 4b events to disk

than we did in Run 2!

our new trigger strategy has
benetfits beyond just efficiency:

1) acceptance is much higher in

the interesting, low my,;, region.

2) the sculpting of backgrounds
IS substantially reduced.
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Run 3 data-taking has been going
remarkably well.

projections are that we will ~double our available
data in 2023.

stay tuned!




the top-quark mass, m,
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the ATLAS m, state of affairs a few years ago: m, = 172.69 £ 0.48 GeV



what does a top-quark decay actually look like™

b-hadron
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ATLAS recently measured m,

via the invariant mass of the
W lepton and the b-jet

m, = 172.63 +£0.79 GeV
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ATLAS also recently measured m,

via the invariant mass of the
W lepton and a lepton

from the b-hadron decay

= 174.71 £0.81 GeV



mtop [GGV]
Result 172.63
Statistics 0.20
Method 0.05 £ 0.04
Matrix-element matching 0.35 £ 0.07
Parton shower and hadronisation 0.08 £ 0.05
Initial- and final-state QCD radiation 0.20 £ 0.02
Underlying event 0.06 4+ 0.10
Colour reconnection 0.29 £+ 0.07
Parton distribution function 0.02 £+ 0.00
Single top modelling 0.03 + 0.01
Background normalisation 0.01 4+ 0.02
Jet energy scale 0.38 4+ 0.02
b-jet energy scale 0.14 £+ 0.02
Jet energy resolution 0.05 £ 0.02
Jet vertex tagging 0.01 £ 0.01
b-tagging 0.04 £+ 0.01
Leptons 0.12 + 0.02
Pile-up 0.06 &= 0.01
Recoil effect 0.37 &= 0.09
Total systematic uncertainty (without recoil) | 0.67 4+ 0.05
Total systematic uncertainty (with recoil) 0.77 £ 0.06
Total uncertainty (without recoil) 0.70 £+ 0.05
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most dominant uncertainties come from
QCD modeling in the top-quark
decay, radiation/hadronization
of the b-quark, and b-hadron decays.
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of the b-quark, and b-hadron decays.
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CMS see a very similar picture
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>
b-quark fragmentation

we do not have first-principals models
for b-quark fragmentation.

historically we have tuned it to
ee — / — bb data and extrapolated

to top-quark decays.
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these measurements are
limited by the resolution of the
b-hadron decay vertex.

there are a few ways to improve here:

1) use more exclusive decay modes
(requires more data)

2) derive better secondary-vertex algorithms
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the theory community is also doing its part:
new NNLO calculations of b-fragmentation in top-quark decays

are much more precise than previously-available predictions.
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CMS have reported sub-400 MeV
uncertainties on m,

by profiling uncertainties.

can ATLAS also achieve sub-400 MeV
uncertainties by improving
top-quark decay modeling?

are much more precise than previously-available predictions.
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there is still much to be explored
In the top and Higgs sectors.

we 're constantly developing new
techniques across our program to
hone in on both particles.

progress in the very-fast
identification of b-jets have proven
extremely beneficial to our
Run 3 search for hh production.

a stronger understanding of top-
quark decays Is still needed to
improve sensitivity to m,, but there

are promising recent developments.



bonus



0.8

0.6

0.4

0.2

arxiv 2104.06821

I‘ II“ II‘ III II| ||| |I| I‘ Iﬂ |I| II“ IJ II| II|
10* 10° 10° 10" 10 10™ 10" 10" 10
running of the SM couplings U [GeV]



180

Mt, GeV

170} 1

Instability

175¢ -

Absolute stability

125 130 135
MH, GeV

140

arXiv 2104.06821



200

350

MAM ~
AAM ~

500

5 - ¢~ 100 fb
1 - 6"~ 50 1b
MM~ —1 = 6" ~ 130 b

my,, [GeV]

800

AA

Significance [0]

2 :I T I I I T I N I T I 111 I 11 I 111 I 11 11 |:
1E 1 ATLAS Preliminary =
o g VS=14TeV,3000fb~" :

- cn% HH - bbyy + bbt* T~ + bbbb -
IF | Projection from Run 2 data =
sl . Asimov data (k) =
75 : —+— No syst. unc. -

= | =—e— Baseline -
6 :— : Theoretical unc. halved —f
55 | —+— Run 2 syst. unc. i~

_ | _
4 i =
B Mg - R o =
2 ' —
1 i =
O :I | 1 | I [ 1 1 | I [ 1 1 | | [ 1 1 | I [ 1 1 | I [ 1 1 | I [ 1 1 | I [ 1 1 | I [ 1 1 | I | 1 | |:
-2 —1 0 1 2 3 4 5 6 / 3

KA



ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <u>=200
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