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Collaborative data-driven science

Increasingly scientific investigations require 
combination of large amounts of data from 
many different sources and ever more 
sophisticated machine learning algorithms 
and tools for their analysis.
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Science data growing exponentially
Expertise required to optimize big data 
analysis; downloads unfeasible; analysis 
must be automated and data-proximate
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Science increasingly collaborative

Data and analysis sharing often ad hoc
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Data increasingly open/public

Improve science by combining data sets 
from different sources
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Data sources/formats heterogeneous

Diverse set of skills and knowledge required, both 
technical and domain knowledge 
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 How can we improve the support for collaborative science 
projects producing and requiring large, heterogeneous data 
sets with geographically distributed partners with varying 
expertise?
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SQL parquet GIS
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Science Platform
Storage

9

parquet

GIS

SQL

Compute

UI / API



Collaborative data-driven science

10

At JHU/IDIES we started with SkyServer

Disseminating data from Sloan Digital Sky Survey

Goal: instant access to rich content

Idea: bring the analysis to the data

Interactive access at the core

SLOAN DIGITAL SKY SURVEY: EARLY DATA RELEASE

Stoughton etal, 2002

https://ui.adsabs.harvard.edu/abs/2002AJ....123..485S
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Raw data:

Particles

FOF groups 

and Subhalos

Density fields

Subhalo merger trees

Synthetic galaxies (SAM)

Mock catalogues

http://gavo.mpa-garching.mpg.de/Millennium/



https://wwwmpa.mpa-garching.mpg.de/millennium/
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 Want full analysis, visualization near the data
◦ Run Python, R, C++, etc

 Want access to data that does not fit in a relational database
◦ Images, spectra, data cubes, custom data sets

 Want to upload own data and combine 
◦ Need workspace close to data, databases and file system

 Want to share work with collaborators
◦ Data, Scripts, Results

 Support for data and libraries from different disciplines
◦ No single data model, ontologies

16



Collaborative data-driven science

17

Resource Access 
Control with Groups

Resource Access 
Control with Groups

Graphical 
User Interfaces

Graphical 
User Interfaces

Programming 
Interfaces

Programming 
Interfaces

Compute in python 
and R

Compute in python 
and R

Storage: databases 
and files
Storage: databases 
and files
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 SciServer is a system allowing Science Researchers across multiple domains to 
host and share their datasets, and provide query and analysis tools for collaborative 
research.

 Core Services:
◦ Science Data Hosting (Files and Databases)
◦ Query of hosted databases
◦ Data Integration across hosted data sources
◦ Computational analysis on hosted data
◦ Collaboration and Sharing
◦ Personal Storage (Files and Database)
◦ API Integration
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 Cosmology
◦ Virgo Millennium suite  ~40TB DB, ~60TB raw

◦ Indra ~0.8PB

◦ ApogeeFire DB ~29TB

◦ Jason Hunt 2021 ~100TB

 Turbulence database, soon >2PB

 Ocean circulation, soon ~2PB
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select h.haloId,p.x-hh.x as x

,      p.y-hh.y as y

,      p.z-hh.z as z, hh.np

from mpahalotrees.mr hh

cross apply MillenniumParticles(

hh.snapnum,

dbo.Sphere::New(

hh.x,hh.y,hh.z,

3*hh.halfmassradius).ToString()) p

where hh.haloid=840000070000000
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Power spectra with DASK
448 simulations, 1 billion particles each. 
Same initial conditions, different seed.
448 Cloud-In-Cell density grids created and FFT-ed in 2 
hours, using 8 DASK workers on distributed file system

Indra: a public computationally accessible suite of cosmological N-body simulations
Falck etal 2021,  https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2659F/abstract
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 ELT process on Spark:
◦ Globus transfer of data

◦ Spark/HDFS used for transforming 
FITS→parquet

◦ Addition of special columns: 
 htm20Id, heal20Id, positions in different coordinate systems, …

◦ MS libraries used for loading into RDB column store

◦ Registration in SciServer for access through CasJobs
and from within Jupyter notebooks
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APOGEE-centric Ananke Simulations in a SciServer SQL Database
Beaton etal 2022, https://ui.adsabs.harvard.edu/abs/2022RNAAS...6..125B

https://ui.adsabs.harvard.edu/abs/2022RNAAS...6..125B
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 Data transfer through Globus 
tasks scripted in Jupyter
notebooks on SciServer to 
distribute files over 12x3 storage 
volumes of FileDB cluster

 Analysis on sciserver in progress 
(C. Fillion)
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https://ui.adsabs.harvard.edu/abs/2021MNRAS.508.1459H/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508.1459H/abstract
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 External deployments

 On K8S with helm
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PMAP

MPE NAOJ

NIST
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 Difficult to aggregate large, geographically distributed data sets: 
◦ joint analysis requires co-location.
◦ SciServer facilitates creating ETL pipelines

 Joint analysis requires integration: aggregate data from various 
sources in a common context
◦ A Science Platform like SciServer provides such a context
◦ It allows users with diverse skills to collaborate on a single data set

 Most frequent mistake: trying to create the “mother of all 
databases”
◦ Building ontologies and data models is hard
◦ We learned an enormous amount during the Virtual Observatory project

 Real life uses require interactive exploration before big analysis
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 Create Data Contexts, each possibly with their own data model and 
ontology, self documenting

 These are secure and read-only, under access control
 User get their own databases/user volumes and resources to 

create value added results
 These can be shared at will with authenticated users at owner's 

discretion
 We can bring in new datasets in isolation very quickly
 Reproducible science on integrated system
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Registration is free at

https://www.sciserver.org

https://apps.sciserver.org
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http://www.sciserver.org/
https://apps.sciserver.org/
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Implementing a General Spatial Indexing Library for Relational 
Databases of Large Numerical Simulations

Lemson, Budavari & Szalay, 2012
https://link.springer.com/chapter/10.1007/978-3-642-22351-8_34
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 Divide simulation volume in regular grid
 Index using space filling curve (Peano-Hilbert, Morton)
 Calculate overlap space filling curve with query volume
◦ Iterate from root volume down, stopping at fully contained boxes

 Find particles in overlap ranges, 
◦ Only for those filter further on exact 3D volume

 Execute as table-valued function from database
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DB also stores locations of “buckets” inside files.
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