

Calibration of cryo detectors at the 100eV scale

Gabrielle Soum-Sidikov, CRAB collaboration CEA Saclay

IRN Neutrino – 17 Nov 2022

CRAB calibration method

1. Thermal neutron capture

2. Emission of a single- **γ** with energy $S_n \approx 5$ -8MeV Leaves the cm-size detector without energy deposition

3. Well-defined recoil energy (two-body kinematics)

100eV-1keV $2MC^2$

Only method combining:

- Pure nuclear recoils
- In the bulk of the detector
- In the sub-keV region

2

eV scale using neutron capture, L. Thulliez, D. Lhuillier et al 2021 JINST 16 P07032

100eV nuclear recoils

Equivalent kinematics for several neutral particles :

- **Nuclear recoilsfollowing nth capture**
- **CevNS with MeV neutrinos**
- **Direct detection of low-mass O(GeV) DM**

Understanding the sub-keV nuclear recoil signal is crucial for upcoming experiments searching for new physics

Complex physics of energy dissipation

- **Four channels** for energy deposition in detectors:
	- **Ionization**
	- Scintillation
	- Phonons
	- Creation of defects
- **Distribution of the energy** in the different channels depends on:
	- Nature of incident particle
	- Energy of incident particle
	- Material of detector

Quenching factor: ratio of ionization energy produced by NR/ER

A.Bonhomme et al. Eur.Phys.J.C 82 (2022) 9, 815

Complex physics of energy dissipation

Lindhard model for quenching factor in the keV region

• Need for more measurements in the sub-keV region

CRAB targets

Suitable candidates have

- High natural abundance
- Large neutron capture cross-section
- High branching ratio for single-**γ** transition

Large F.O.M arity study

hin reach of **inization channel nching studies**

> **Strongest single-γ transition**

Presting cases of 2γ transitions

The four main cryodetectors used in the community could be calibrated via CRAB

$CRAB$ in $CaWO₄$

- 1**γ** de-excitations : calibration peak
- Multi **γ** de-excitations : recoil energy depends on **γ** energies and relative directions --> recoil energy continuum
- Lower energy **γ** and conversion electrons can saturate the detector with energy deposition above 1keV
	- \rightarrow limit the acceptable neutron flux
	- --> no direct impact on calibration peaks

$CRAB$ in $CaWO₄$

- Two calibration peaks @112eV and @160eV
- A third peak burried in the multi-**γ** continuum

Recoil energy spectrum for $CaWO_4$ from GEANT4+FIFRELIN simulations

Proof of concept : experimental setup

27-30 Jul 2022, TUM

- 0.75g **NUCLEUS** CaWO₄ crystal + TES
- Baseline resolution: ~6.5eV
- Copper holder + sapphire ballsfor contact
- ⁵⁵Fe source for electronic recoil calibration @6keV

Portable neutron source near a dry cryostat (<7mK) @ TUM

Two-stage spiral spring decoupling between assembly and detector holder

Proof of concept : portable neutron source

From ²⁵²Cf:

- Thermalize fast neutrons:
	- enable captures + avoid scattering in the ROI
- Attenuate fission **γ**:

protect cryodetector countingrate and pileup

Proof of concept : blind peak search

NUCLEUS/CRAB joined publication 8 Nov 2022 arXiv:2211.03631

> Background data: 18.9h Source data: 40.2h

Delta chi2-test

Two exponentials

- steep rise @low energy
- Fast neutron scattering

+1 gaussian for the expected peak

Significance: 3.1σ (2-sided)

Peak at 106.7 ± 2eV Std deviation: 6.0 ± 1.5eV

Proof of concept : data vs model

NUCLEUS/CRAB joined publication arXiv:2211.03631

- Model built from MC simulations and fitted bkgd measurements
- Agreement data/model chi² = 58.06/58
- Parameters fully compatible with the blind peak search

= **1st observation** of neutron-capture-induced peak at 100eV scale, with $CaWO₄$ Demonstration of an **in-situ non-intrusive calibration** for DM and CevNS

Perspectives

- Longer run (more stat), on $CaWO₄$ (access to 160eV peak)
- Run with a NUCLEUS Al_2O_3 cryodetector
- Further electronic recoil calibrations :
	- LED calibration
	- XRF calibration
- More robust energy reconstruction, access to the detector non linearitiesin the ER response

XRF source with multiple lines V. Wagner

LED calibration scheme with 3.1eV photons *L. Cardini et al., Eur. Phys. J. C 81 (2021) 7, 636.*

CRAB 2 : Experimental setup

- No fast neutrons background
- Counting rate dominated by the CRAB process

TRIGA Mark-II nuclearreactor TU-Wien

Foreseen CRAB experimental setup

- Beamline has been prepared by TU-Wien
- CRAB measurement planned for **end 2023/early 2024**

- Rejection of multi-**γ** continuum
- Extend the method :
	- Linearity studies with the three W peaks
	- Lower recoil energy
	- Directionality studies (well-defined recoil direction)
	- Other materials

Germanium cryo-detector

EDELWEISS (2cm length cube) cryodetector

Energy resolution: 20eV

E. Armengaud et al. Phys. Rev. D, 99:082003, 4 2019

- Calibration peak @416eV
- Ionization should still be accessible --> could provide a NR/ER quenching measurement in a high-quenching region

CRAB 2 : timing effects

$$
E_{recoil} = \sum_{\gamma} p_{\gamma}^2/2M_{nucleus}
$$

FIFRELIN (see A. Chalil's talk) coupled to **IRADINA** (Binary Collision Approximation code) to simulate in-flight **γ** emission C. Borschel, C. Ronning/Nucl.

Instrum. Methods B 269 (2011) 2133

- Timing changes the energy deposited in the bolometer
- Single-γ calibration peaks are not affected

Timing effects in Germanium

γ-cascade timing from FIFRELIN :

- Experimental
- Weisskopf (Known to be inaccurate)
	- --> FIFRELIN ongoing development to do better Intermediate-Z Germanium good study case (see A. Chalil's talk)

Prompt hypothesis: τ_ν << τ_{recoil} **In-flight γ**-emission

Counts/5eV

Conclusion

- CRAB: unique calibration method for the nuclear recoil response of cryodetectors
- First observation of a calibration peak
	- with 3σ significance
	- Perfect agreement between data and model
	- 112eV recoil due to single-**γ** de-excitation of *n + ¹⁸²W*

- High-precision measurements to come in Phase 2 (end 2023-early 2024)
	- lower background + higher counting rate in ROI
	- **γ**-tagging: extension to other materials, lower recoil energy
	- timing effects

Back-up slides

CRAB simulations : FIFRELIN

O. Litaize et al., Eur. Phys. J. A 51, 1 (2015)

- Developed to model the de-excitation of fission fragments
- FIFRELIN builds the level scheme
	- From evaluated nuclear data
	- Completed with theoretical level density models
	- 1. Following neutron capture, compound nucleus is in a state close to Sn
	- 2. Then de-excitates towards ground state emitting **γ**
	- **3. FIFRELIN** generates **γ** cascades with a Monte Carlo process from Sn to G.S.

Timing effects in Germanium

In-flight γ-emission No resolution effect

Recoil studies with Iradina

- W recoils with **112eV** in CaWO₄
	- W looses less energy in collisions with light elements Ca and O than with W
- Ge recoils with **416eV** in Ge
	- Collidesonly with similar mass targets

Renormalization to initial recoil energy

Nuclear level half-lives

100eV nuclear recoils

Direct detection of light Dark Matter Precision Precision measurements with coherent **neutrinos/nucleiscattering**

Complementary tests of Standard Model

Reactor antineutrinos: several MeV