

GUNDAM fitter for T2K Physics is hard, statistical analysis should be easy

Adrien Blanchet DPNC - (Geneva)

IRN @ IJCLab

The 17th of November - 2022

Mobile Suit Gundam

STEREO oscillation analysis

UNIVERSITÉ DE GENÈVE

- Look for relative distorsions on the neutrino spectra
- Low neutrino energy: inverse beta decay interactions only (CCQE)

10.1103/PhysRevD.102.052002

TABLE II. Overview of relative systematic uncertainties entering the oscillation analysis (Sec. XI). Cell-to-cell correlated normalization parameters are not listed, since the oscillation analysis is insensitive to common shifts among detector cells.

Туре	Relative uncertainy	Reference
Normalization (uncorrelated)		
Cell volume	0.83%	Sec. II B
Neutron efficiency correction	0.84%	Sec. VIII
Energy scale (uncorrelated)		
Mn anchor point	0.2%	Sec. VIB
Cell-to-cell deviations	1.0%	Sec. VIF
Energy scale (correlated)		
Time stability	0.3%	Sec. VID

Very few systematics!

- No flux related errors
- No Neutrino-nucleus cross-section systematics
- Only detector uncertainties involved

T2K oscillation analysis

- UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES
- A total of ~1000 fit parameters to include in the analysis (flux, cross-section, detector uncertainties)
- Very fast software tools required to measure the oscillation parameters

Toward Hyper-Kamiokande & DUNE

$$N_l(E_{\nu}) = P(\nu_{\mu} \to \nu_l)(E_{\nu}) \times \phi_{\nu_l}(E_{\nu}) \times \sigma_{\nu_l}(E_{\nu}) \times \epsilon_l(E_{\nu})$$

Requested control on systematics \sim 2 - 3% \rightarrow new parameters

Addressing upcoming challenges in T2K

FACULTÉ DES SCIENCES

Improving knowledge on ν -nucleus interactions

- Lepton kinematic has different E_{ν} dependencies with interaction channels
- Need of the relative proportions of these for applying the oscillation probability correctly
- Develop interaction models for a better description of the outgoing particle cinematic & create new systematic response functions

RES (abs. π)

Cross-section measurements

Caspar Schloesser @ NuInt22

Expand the phase-space at ND280

Lepton kinematic \rightarrow transverse kinematic imbalance

Joint-fits with other NDs WAGASCI/BabyMIND

ICWD

See Marco's talk!

A common software for statistical analysis?

What is GUNDAM?

GUNDAM: Generic fitter for Upgraded Near Detector Analysis Methods

- Fitter framework for the next statistical analysis of T2K
- Framework designed to host multiple analysis using JSON/YAML configuration files
- Open source (LGPL) C++ code based on ROOT publicly available on GitHub

A new way of performing statistical analysis

- Separate fitter development works from analysis developing works
- Better traceability and validation of the output \rightarrow share inputs easily with other people

Parameter propagation engine

Fitter Propagator library PlotGenerator Propagator ParScanner FitSamples library FitParameters library **FitParameterSet FitSampleSet** list() list() **FitSample FitParameter** list() list() SampleElement **DialSet** list() list() **PhysicsEvent** Dial Virtual class

Flexible data handling structure

- Generic sample definition
- Parameter definition with multiple options
 - Covariance matrix
 - Apply conditions
 - Per dataset response function

Config & usage by a single gear: Propagator

- Initialise samples & parameters
- Fast propagation engine (optimised & parallelised)
- Embeds diagnostic tools (figure generators)

UNIVERSITÉ

DE GENÈVE

FACULTÉ DES SCIENCES

Example of configuration: samples

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Sample definition using common ROOT tools

Loads data from TTree

fitSampleList:

- Define selection cuts & N dimensional binning
- Specify which dataset the sample should be using (joint analysis with multiple detectors)

		1	variables: CosThetamu CosThetamu Pmu Pmu
	#######################################	2	-1 0.5 0 200
	# FHC	3	-1 0.5 200 300
	#######################################	4	-1 0.5 300 400
		5	-1 0.5 400 450
	# Samples definition :	6	-1 0.5 450 500
Ð	- name: "FHC FGD1 #nu_{#mu} CC 0#pi"	7	-1 0.5 500 550
	isEnabled: true	8	-1 0.5 550 600
	<pre>binning: "./inputs/samples/binnings/FHCNumuCCOPi.txt"</pre>	→	-1 0.5 600 650
	<pre>selectionCuts: "SelectedSample == 3" # kFGD1NuMuCCOPi</pre>	10	-1 0.5 650 700
	dataSets: ["ND280"]	11	-1 0.5 700 750
		12	-1 0.5 750 800
		13	-1 0.5 800 850
Y	- name: "FHC FGD1 #n0_{#m0} CC 1#p1"	14	-1 0.5 850 900
	isEnabled: true	15	-1 0.5 900 950
	<pre>binning: "./inputs/samples/binnings/FHCNumuCC1Pi.txt"</pre>	16	-1 0.5 950 1000
	<pre>selectionCuts: "SelectedSample == 4" # kFGD1NuMuCC1Pi</pre>	17	-1 0.5 1000 1050
P	dataSets: ["ND280"]	18	-1 0.5 1050 1100
		19	-1 0.5 1100 1200

Example of configuration: parameters

UNIVERSITÉ **DE GENÈVE** FACULTÉ DES SCIENCES

Define fit parameters & how they should apply

- Parameter prior values / limits / names
- Add prior covariance matrices
- Option for Eigen decomposition
- Define response functions (Dials) for each dataset
 - Support for multiple dial types: Normalisation / Graph / Splines
 - Binned or event-by-event dials

Correlation matrix of flux parameters

Auto-generated outputs

UNIVERSITÉ DE GENÈVE

Configurable figures and data generator in the output ROOT file

- Debug info (command line, full JSON configuration, GUNDAM version...)
- Fit histograms / projection on a given variable / breakdowns
- Likelihood parameter scans
- Event rate monitoring wrt parameter variations
- Loaded sample events data in TTree
- Post-fit values, error, covariance, hessian decomposition

FHC FGD2 V_u CC 0π

Enu:PmuCoulombCorrection 2.0 1.8

More features

Flexible data handling structure

- Toy data fits
- Eigen decomposition
- Principle component analysis for highly correlated parameters
- Alternative fitter algorithms (Migrad, Simplex, Combined...)
- User compiled C++ code (plugins)
 - Custom likelihood functions definition
 - Custom variable definitions
 - Custom dials functions (WIP)

Documentation available

lines (15 sloc) 1.59 KB		<	> 🗅 Raw	Blame
Propagator				
< back to parent (FitterEngine)				
Description				
Config options				
Option	Туре	Description	Default	
fitSampleSetConfig	json	FitSampleSet config		
parameterSetListConfig	json	ParameterSetList config		
dataSetList	json	DatasetManager config		
plotGeneratorConfig	json	PlotGenerator config		
showEventBreakdown	bool	Print sample total weight	true	
enableStatThrowInToys	bool	Throw statistical error with a poisson distribution	true	
enableEventMcThrow	bool	Each MC event get reweighted with Poisson(1)	true	
throwAsimovFitParameters	bool	Throw parameters of MC before fit (used to test fitter convergence	e) false	

Optimisation: parallelising tasks

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Parameter propagation is fully parallelised using CPU thread workers

- Main thread sends a signal to the parallel threads
- Each thread propagate the systematics on a subset of events
- Near 100% CPU efficiency (depending on the RAM access speed)

Expanding to GPU computing

- Unified CPU/GPU dial computation (same actual C++ code)
- Highly optimised cache system
- Optimising the amount of memory involved during the fit (T2K OA ~24GB in RAM)

	1 Thread	16 Threads
CPU (standard GUNDAM)		7.63 it/s
GPU (only splines)		7.24 it/s
GPU (only event weights)	24 it/s (41 ms/it)	52 it/s (19 ms/it)
GPU (fill histograms)		64.6 it/s
GPU (fill histograms)		63.8 it/s

Validated with T2K latest oscillation analysis

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Complete validation requested for GUNDAM to takeover

- Compare with latest OA results performed with the original tool (BANFF)
- Numerous checks performed
 - Checked event rates wrt every parameters ($\pm 1, \pm 3\sigma$)
 - Checked likelihood scans
 - Checked post-fit errors and best-fit values (Asimov + Data fits)
 - Checked the generated contours on oscillation parameters
 - Checking toy fits χ^2 distributions

Performance comparison

- BANFF takes ~6 days \rightarrow less than 0.5 day with GUNDAM in the same conditions!
- Up to 1.5 hour using PCA (less fit parameters)

Dial	Sample	(G-B)/G at -1σ
	FHC FGD1 ν_{μ} CC0 π	-8.76256e-09
425	FHC FGD1 ν_{μ} CC1 π	1.45984e-07
58	FHC FGD1 ν_{μ} CCOth	-6.59672e-15
.06	FHC FGD2 ν_{μ} CC0 π	7.2623e-08
E 0	FHC FGD2 ν_{μ} CC1 π	-9.56866e-08
Ë	FHC FGD2 ν_{μ} CCOth	2.8355e-07
11	RHC FGD1 $\bar{\nu}_{\mu}$ CC0 π	8.63167e-15
N	RHC FGD1 $\bar{\nu}_{\mu}$ CC1 π	1.63738e-15
Ğ	RHC FGD1 $\bar{\nu}_{\mu}$ CCOth	3.71067e-15
).4	RHC FGD2 $\bar{\nu}_{\mu}$ CC0 π	-1.29254e-15
0, (RHC FGD2 $\bar{\nu}_{\mu}$ CC1 π	-1.09194e-15
- -	RHC FGD2 $\bar{\nu}_{\mu}$ CCOth	-5.79771e-16
2	RHC FGD1 ν_{μ} (bkg) CC0 π	8.83851e-15
ЭH	RHC FGD1 ν_{μ} (bkg) CC1 π	-1.56943e-15
) F	RHC FGD1 ν_{μ} (bkg) CCOth	-2.9663e-15
28(RHC FGD2 ν_{μ} (bkg) CC0 π	1.53978e-14
ĝ	RHC FGD2 ν_{μ} (bkg) CC1 π	8.55123e-16
4	RHC FGD2 ν_{μ} (bkg) CCOth	-2.84107e-15

Validated with T2K latest oscillation analysis

FACULTÉ DES SCIENCES

Upgrade Physics with GUNDAM

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

GUNDAM is ready for the next T2K oscillation analysis!

- GUNDAM has been granted to be the new official tool for next oscillation analysis
- Currently running side to side with the historical frameworks
- Full sensitivity studies for the phase-II of data taking have started:
 - How should we distribute neutrino vs antineutrino runs?
 - How to parametrise new systematics?
 - What's the best fitting phase-space to constrain our models?

Beyond the T2K oscillation analysis

UNIVERSITÉ DE GENÈVE

Alternative engines can benefit from the propagator library

- Adding new algorithm that needs to propagate parameters on sample
 - Implementation of Metropolis Hastings MCMC (as done in the alternative T2K OA)
 - Cross-section extraction tool \rightarrow bringing another working group of T2K in GUNDAM

• Space for new extension (Hamiltonian MCMC, response function generator, marginalising tool...)

Beyond the T2K oscillation analysis

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Joint fit using all near detectors of T2K

- Along with the upgraded ND280 samples:
 - INGRID: on and off-axis measurement
 - WAGASCI/BabyMIND: water & carbon targets @ 1.5-degree off-axis

...and the far detector?

- Including Super-Kamiokande samples as well
- Fully exploits correlations between the systematic uncertainties
- Propagate oscillation parameters
- Need to implement a Feldman Cousin tool

Use GUNDAM for other experiments?

• As an open source / LGPL software other experiments

WAGASCI/BabyMIND

Physics is hard, statistical analysis should be easy Physics is fun, statistical analysis should be as well !

GUNDAM as a true next generation fitting tool

- A multipurpose fitter framework to host various T2K analysis
- Using a fast, robust and flexible parameter propagation engine
- Numerous diagnostic and drawing tools
- Ready to face larger statistics (samples) and nuisance parameters

GUNDAM for T2K

- Fully validated with the latest oscillation results
- Currently working side to side with the current ongoing analysis
- Ready for phase-II runs (2024+) and next LBL experiments
- Entering cross-section working group

Extending GUNDAM

- Alternative fitter engines
- Joint fits with other near detectors
- Add oscillation parameter & Feldman Cousins tools

gence nationale

