

Solar neutrinos in XENONnT

IRN neutrinos - 17 novembre 2022

Pellegrini Quentin

Summary

- XENONnT
- Solar neutrinos
- XENONnT first results
- XENONnT potential in neutrino physics

The XENON Collaboration

180 + scientists27 institutes / 11 countries

BURG

XENON

清莱大学

Zurich

University of Zurich^{⊍z}"

Fsinghua University

Tsinghua

Tokyo

Nagoya

Kobe

מכוז ויצמז למדע WFIZMANN INSTITUTE OF SCIENC

Weizmann

NYUAD

Pellegrini Quentin - LPNHE

The XENON Program

XENON10 2005–2007

KENO	N100
2009-	-2016

· · · ·	-
	1
	-
	1-1-1
	1

XENON1T 2016–2018

PRL	100	(2008)	021303	
PRD	94	(2016)	122001	
PRL	121	(2018)	111302	

25 kg LXe 15 cm drift length $\sigma_{\rm SI} \sim 9 \times 10^{-44} \, {\rm cm}^2$ at 100 GeV/ c^2 (2007)

161 kg LXe 30 cm drift length $\sigma_{\rm SI} \sim 10^{-45} \, {\rm cm}^2$ at 50 GeV/ c^2 (2016)

3.2 t LXe 1 m drift length $\sigma_{\rm SI} \sim 4 \times 10^{-47} \,{\rm cm}^2$ at 30 GeV/ c^2 (2018) 8.4 t LXe 1.5 m drift length $\sigma_{\rm SI} \sim 1.4 \times 10^{-48} \,\rm cm^2$ at 50 GeV/ c^2 (20 t \times yr)

XENONnT

2020-2025

XENONnT

Pellegrini Quentin - LPNHE

Detection principle

Dual Phase Time Projection Chamber (Dual TPC)

Position reconstruction :

- drift time = t(S2) t(S1)

Particle discrimination

Solar neutrinos

Nuclear reaction chains in solar core

XENON

Solar neutrinos fluxes

Solar standard model (SSM)

Solar internal structure
Neutrino production

SSM constrained parameters : Solar Radius, Solar luminosity Solar metallicity (Z) → Reduced recently Low-Z SSM → loss of consistency with solar data → Solar abundance problem

• Measurements :

Elastic electron neutrino scattering (ES) in large active volume detector (water cherenkov, scintillator...) + solar luminosity constraint

Independent of SSM

Solar neutrinos

In LXe TPC experiments, Solar neutrinos can interact mainly in two ways :

- Elastic electron scattering (ES) ER signal
- Elastic coherent neutrino-nucleus scattering (CEvNS) ----> NR signal

Dark matter detectors are designed to be sensible at low-energy NR, which implies good energy resolution and energy threshold for both ER and NR.

Therefore, they are suited to study neutrino signals in order to constrain neutrino physics (properties, sources, BSM...)

Irreducible background for DM direct search

XENONnT first results

Low energy electronic recoil study [1]

- Science Run 0, July–Nov. 2021 ~ 100 days of data (4t fiducial mass)
 - → 1.16 tonne.years
- ROI (1-144 keV), blind analysis (< 20 keV)
- Large part of background is constrained by external measurements

TABLE I. The background model B_0 with fit constraint and best-fit number of events for each component in (1, 140) keV.

Component	Constraint	Fit
214Pb	(584, 1273)	980 ± 120
85 Kr	90 ± 59	91 ± 58
Materials	266 ± 51	267 ± 51
¹³⁶ Xe	1537 ± 56	1523 ± 54
Solar neutrino	297 ± 30	298 ± 29
¹²⁴ Xe	-	$256~\pm~28$
\mathbf{AC}	$0.70~\pm~0.04$	$0.71~\pm~0.03$
¹³³ Xe	-	163 ± 63
83m Kr	-	80 ± 16

[1] XENON collaboration, Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.

Pellegrini Quentin - LPNHE

XENONnT first results

- ER Background reduced by a factor 5 (16.1 ± 1.3 events / (tonne × year × keV) compare to XENON1T
 Lowest ER background
- Current ²²²Rn activity 1.77 μBq/kg (7× lower than XENON1T→ Goal : < 1 μBq/kg
- XENON1T excess [2] excluded at 8.6σ → XENON1T excess likely caused by a small tritium contamination

[2] XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004.

Pellegrini Quentin - LPNHE

Solar ES and XENONnT

Darwin : Next phase of XENON Collaboration using a LXe TPC of 40 tonnes (fiducial mass of 30 tonnes).

Darwin sensitivity paper [3] — XENONnT potential

Solar ES Integrated rate (per tonne-year) : pp (365), ⁷Be (133 + 7,6), ¹³N, ¹⁵O and pep (7).

[3] DARWIN Collaboration, Aalbers J et al 2020 Solar neutrino detection sensitivity in Darwin via electron scattering Eur. Phys. J. C 80 1133

XENON

Solar ES and XENONnT : Flux measurements

Solar ES and XENONnT : Weinberg angle and neutrino survival probability

.....

XENON

CEvNS : Reminders

 First observation of coherent elastic neutrino-nucleus scattering (CEvNS) at 6,7σ by COHERENT experiment in 2017 at the Spallation Neutron Source (SNS)

CEvNS : Astrophysicals CEvNS and Dark matter search

Astrophysicals CEvNS :

- Irreducible NR background
- WIMPs Sensitivity limits, Neutrino Floor (red dotted line).
- Possible distinction of WIMPs and CEvNS signals (High stat) Neutrino Fog (yellow area)

CEvNS and solar neutrinos

- Background for Low-WIMPs mass (< 10 GeV)
- In our ROI (>10eV), only ⁸B-v counts (pp III chain).

Sensitivity of DM experiments in function of WIMPs (DM candidate) mass

CEvNS : XENON1T results

0,6t.y exposure result

AC	\mathbf{ER}	Total BG	$CE\nu NS$	Data
5.14	0.21	5.38	2.11	6

Accidental Coincidence (AC) : Pairing of single S1s (lone PMT hits pile up) and S2s (TPC surface event) simuling a physical events.

Main background for CEvNS Analysis

XENONnT CEvNS analysis

- Improve AC Background rejection
- Improve Ly and Qy model for low NR recoils
- 20 ty exposure (30 times XENON1T analysis)

Full lines : CEvNS XENON1T analysis **[4] Dashed lines** : DM analysis

[4] XENON Collaboration, Aprile E et al 2020 Search for coher ent elastic scattering of solar 8B neutrinos in the XENON1T dark matter experiment Phys. Rev. Lett. 126 091301

Pellegrini Quentin - LPNHE

XENON

Thank you for your attention

IRN neutrinos - 17 novembre 2022