Moon \& Sun shadow KM3NeT/ORCA

Luc C. • 17/11/2022 • IRN • IJCLab

KM3NeT

- Large array (2BB) optimized for [1TeV:10PeV]
- Neutrino astronomy: diffuse flux, point source search
- goal: < 0.1° angular resolution
\rightarrow knowledge of relative DOM position $\sim 10 \mathrm{~cm}$
\rightarrow knowledge of absolute orientation $<0.1^{\circ}$

- Dense array (1BB) optimized for [1GeV:100GeV]
- Atmospheric neutrino oscillation
- $\mathrm{GeV} / \mathrm{MeV}$ neutrino astronomy
- < 0.5° angular resolution

Moon/Sun cosmic ray shadow

Moon/Sun cosmic ray shadow Statistics:

- for 2000 CR in a 12° window around Sun/Moon $\rightarrow 1$ blocked by Sun/Moon
- we need 500 CR blocked to see a shadow $\rightarrow \sim 1$ year of ORCA6

\rightarrow ARCA (-3500m)

Local coordinates (azimuth - zenith) - all events - ORCA

Local coordinates - Moon/Sun position

Sun
Moon

Local coordinates - events < 12° wrt. Moon/Sun position

Simulation of the shadow on MC

mc true without moon disk $\rightarrow \mathrm{mc}$ reco
\rightarrow perform a chi square scan

Fitting model

(x, y) coordinates from the zenith and azimuth angles:
sky object $\left(\theta_{\text {sk }}, \alpha_{\text {sk }}\right)$ and tracks $\left(\theta_{\text {tr }}, \alpha_{\text {tr }}\right)$

$$
\begin{aligned}
& x=\left(\alpha_{s k}-\alpha_{t r}\right) \sin \theta_{t r} \\
& y=\theta_{s k}-\theta_{t r}
\end{aligned}
$$

parameterization of the track distribution in the absence of the shadow:

$$
\begin{gathered}
P_{z}\left(n_{z}\right)=1+\sum_{i=1}^{n_{z}} h_{z i} z^{i} ; z=[x, y] \\
\mathbf{H}_{0}: \text { no-shadow hypothesis } \\
H_{0}=\rho \cdot P_{x}\left(n_{x}\right) \cdot P_{y}\left(n_{y}\right)
\end{gathered}
$$

G : bi-dimensional Gaussian to tit the deticit ot secondary cosmic ray events due to the shadowing effect

$$
\begin{gathered}
G\left(A, \sigma_{\text {res }}, x_{s}, y_{s}\right)=\frac{A R_{s}{ }^{2}}{2 \sigma_{\text {res }}^{2}} \exp \left[-\frac{\left(x-x_{s}\right)^{2}+\left(y-y_{s}\right)^{2}}{2 \sigma_{\text {res }}^{2}}\right] \\
\mathbf{H}_{1}: \text { shadow hypothesis } \\
H_{1}=H_{0}-\rho \cdot G
\end{gathered}
$$

Preparation on MC:

data/MC angular error estimate distribution

Preparation on MC:

angular error estimate scan to optimize track selection

Preparation on MC:
 data/MC angular error estimate distribution

DATA

- data events: 3.2 million
- fraction of sel. events: 45\%

MONTE CARLO

- MC events: 11 million
- fraction of sel. events: 45\%

Preparation on MC:

angular error estimate scan to optimize track selection

sun moon sun+moon

Application to Data

Verify background model

$$
H_{0}=\rho \cdot P_{x}\left(n_{x}\right) \cdot P_{y}\left(n_{y}\right)
$$

Fit at nominal Moon/Sun position (xs,ys) $=(\mathbf{0}, \mathbf{0})$
with free amplitude, width \rightarrow significance

$$
G\left(A, \sigma_{\text {res }}, x_{s}, y_{s}\right)=\frac{A R_{s}{ }^{2}}{2 \sigma_{\text {res }}^{2}} \exp \left[-\frac{\left(x-x_{s}\right)^{2}+\left(y-y_{s}\right)^{2}}{2 \sigma_{\text {res }}^{2}}\right]
$$

Determine shadow shape and pointing accuracy

with fixed width ($\sigma_{\text {res }}$)

\rightarrow shadow position with respect to nominal + contours Crosscheck with fake sources

Application to data:

Verify background model: $\mathbf{n}_{\mathrm{x}}=\mathbf{0} \cdot \mathbf{n}_{\mathrm{y}}=\mathbf{2}$

$$
H_{0}=\rho \cdot P_{x}\left(n_{x}\right) \cdot P_{y}\left(n_{y}\right)
$$

Figure 1: Event distribution in x and y for the Sun data sample (blue crosses) compared to the polynomial fits from the H_{0} hypothesis (black lines).

Results ORCA6-499 days

from fit at nominal position: (xs, ys) $=(0,0)$

Parameters	Moon 1D	Moon 2D	Sun 1D	Sun 2D
$\sigma_{\text {res }}$	$0.49^{\circ} \pm 0.11^{\circ}$	$0.49^{\circ} \pm 0.15^{\circ}$	$0.66^{\circ} \pm 0.08^{\circ}$	$0.65^{\circ} \pm 0.13^{\circ}$
A	0.69 ± 0.17	0.71 ± 0.27	1.38 ± 0.31	1.31 ± 0.34
$\Delta \chi_{H 1 / H 0}^{2}$	-20.7	-21.3	-47.2	-43.0
Significance	4.2σ	4.2σ	6.5σ	6.2σ
Events $/$ deg 2	2886	2892	3166	3161

Results ORCA6 - 499 days

from fit at nominal position (up): (xs, ys) $=(\mathbf{0}, \mathbf{0})+$ fit with fixed width $\left(\sigma_{\text {res }}\right)$ (down)

$X^{2}{ }_{H 1}-X^{2}{ }_{H 0}$ scan wrt. local angular distance from the Sun/Moon in
azimuth, zenith: $\left[\mathrm{x}_{\mathrm{s}}, \mathrm{y}_{\mathrm{s}}\right]$

Results ORCA6-449 days

from fit with fixed width ($\sigma_{\text {res }}$)

- Compatible with nominal position $\rightarrow>60 \%$ compatibility with nom. position
- Best fit position compatible between Moon \& Sun \rightarrow no significant shift observed
- Sun - pointing results
- xs (deg) $=-0.01+/-0.11$
- ys (deg) $=0.10+/-0.12$
- Moon - pointing results
- \quad xs $(\mathrm{deg})=0.11+/-0.21$
- $y s(\mathrm{deg})=0.04+/-0.13$
$1 \sigma 2 \sigma 3 \sigma$ contour wrt. local angular distance from the Sun/Moon in azimuth, zenith: $\left[\mathrm{x}_{\mathrm{s}}, \mathrm{y}_{\mathrm{s}}\right]$

Summary

Moon (Sun) cosmic ray shadows were observed with a 4.2σ (6.2 σ) statistical significance using 499 days of 6 DUs KM3NeT/ORCA data
\rightarrow good compatibility with the nominal positions of Moon/Sun, no significant shift in the absolute orientation was observed
\rightarrow good understanding of the detector positioning and orientation after deployment and after the several acoustic calibration stages
\rightarrow The shadow observed in data is compatible with expectations from MC concerning the significance, angular width and amplitude
\rightarrow The Sun shadow amplitude is consistent with the effects of the
Sun's magnetic field in times of low activity
\rightarrow Promising future studies with ARCA and ORCA
Search．．．All fields

Astrophysics＞Instrumentation and Methods for Astrophysics
 ［Submitted on 15 Nov 2022］
 First observation of the cosmic ray shadow of the Moon and the Sun with KM3NeT／ORCA
 KM3NeT Collaboration

This article reports the first observation of the Moon and the Sun shadows in the sky distribution of cosmic－ray induced muons measured by the KM3NeT／ORCA detector． The analysed data－taking period spans from February 2020 to November 2021，when the detector had 6 Detection Units deployed at the bottom of the Mediterranean Sea，each composed of 18 Digital Optical Modules．The shadows induced by the Moon and the Sun were detected with a statistical significance of $4.2\{\backslash$ sigma $\}$ and $6.2\{\backslash$ sigma\}, respectively, at their nominal position. This early result confirms the effectiveness of the detector calibration, in time, position and orientation and the accuracy of the event direction reconstruction．This also demonstrates the performance and the competitiveness of the detector in terms of pointing accuracy and angular resolution．

```
Comments: }14\mathrm{ pages, }8\mathrm{ figure
Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM); High Energy Astrophysical Phenomena (astro-ph.HE)
Cite as: arXiv:2211.08977 [astro-ph.IM]
    (or arXiv:2211.08977v1 [astro-ph.IM] for this version)
        https://doi.org/10.48550/arXiv.2211.08977 (i)
```


Submission history

```
From：Luc Cerisy［view email］
［v1］Tue， 15 Nov 2022 14：48：34 UTC（394 KB）
```


Download：

－PDF
－Other formats
（license）
Current browse context
astro－ph．IM
＜prev｜next＞
new｜recent｜ 2211
Change to browse by： astro－ph
astro－ph．HE
References \＆Citations
－INSPIRE HEP
－NASA ADS
－Google Scholar
－Semantic Scholar
Export Bibtex Citation

Bookmark

䞠畕気

THANKS

BACKUP

Preparation on MC:

comparison between actual angular resolution and used gaussian function

