

First Xenon Results With R2D2

Pierre Charpentier

université de **BORDEAUX**

IRN Neutrino

Experimental Setup

Latest Improvements And First Xenon Results

Pierre Charpentier

IRN Neutrino

17/11/2022

Introduction **Motivations: R2D2 - Rare Decays with Radial Detector**

search.

for $\beta\beta0\nu$ decay searches by matching the following requirements:

Excellent energy resolution: 1% FWHM at ¹³⁶Xe Q_{ββ} of 2.458 MeV

Low (zero) background: below 0.1 event / year

Large mass of isotope ¹³⁶Xe: ton scale experiment

¹HP-TPC: High Pressure Time Projection Chamber ² JINST 13 (2018) no.01, P01009 [arXiv:1710.04536] ³ SPC: Spherical Proportional Counter

Pierre Charpentier

- R2D2 is an R&D project that explores a single anode HP-TPC¹ solution for BBOv
- Preliminary simulations² have shown that a SPC³ could reach competitive sensitivity

Principle And Advantages

• Excellent energy resolution¹.

Low (zero) background.

- Excellent background rejection.
- Low material budget.

Large mass of isotope ¹³⁶Xe. Easy isotope enrichment.

¹ A. Bolotnikov and B. Ramsey, Nucl.Instrum.Meth.A 396 1997 **Pierre Charpentier**

¹³⁶Xe ($\beta\beta$ emitter) enriched gas as medium

IRN Neutrino

Principle And Advantages

Excellent energy resolution¹.

Low (zero) background.

- Excellent background rejection.
- Low material budget.

Large mass of isotope ¹³⁶Xe. Easy isotope enrichment.

¹ A. Bolotnikov and B. Ramsey, Nucl.Instrum.Meth.A 396 1997 **Pierre Charpentier**

¹³⁶Xe ($\beta\beta$ emitter) enriched gas as medium

IRN Neutrino

Principle And Advantages

- Excellent energy resolution¹.
- Low (zero) background.
 - Excellent background rejection.
 - Low material budget.
- Large mass of isotope ¹³⁶Xe. Easy isotope enrichment.

¹ A. Bolotnikov and B. Ramsey, Nucl.Instrum.Meth.A 396 1997 **Pierre Charpentier**

¹³⁶Xe (ββ emitter) enriched gas as medium

IRN Neutrino

Principle And Advantages

- Excellent energy resolution¹.
- Low (zero) background.
 - Excellent background rejection.
 - Low material budget.
- Large mass of isotope ¹³⁶Xe.
 - Easy isotope enrichment.

¹ A. Bolotnikov and B. Ramsey, Nucl.Instrum.Meth.A 396 1997 **Pierre Charpentier IRN Neutrino**

¹³⁶Xe (ββ emitter) enriched gas as medium

Introduction **Current Phases**

Current prototype goal: Achieve 1% FWHM energy resolution at 2.458 MeV, $^{136}Xe Q_{\beta\beta}$.

- First phase with Argon as detector medium and ²¹⁰Po as α source.
 - Electronics and data acquisition
 - Sensor characterisation and improvement
 - Light readout¹
- Second phase with Xenon as detector medium and ²¹⁰Po as α source.
 - Gas purity development
 - Gas recirculation and recovery
 - Exploring CPC² solution
- ¹ Nucl.Instrum.Meth.A 1028 (2022) 166382 [arXiv:2201.12621] ² CPC: Cylindrical Proportional Counter

Pierre Charpentier

IRN Neutrino

Introduction **Current Phases**

- First phase with Argon as detector medium and ²¹⁰Po as α source.
 - Electronics and data acquisition
 - Sensor characterisation and improvement
 - Light readout¹
- Second phase with Xenon as detector mediur
 - Gas purity development
 - Gas recirculation and recovery
 - Exploring CPC² solution
- ¹ Nucl.Instrum.Meth.A 1028 (2022) 166382 [arXiv:2201.12621] ² CPC: Cylindrical Proportional Counter

Pierre Charpentier

Current prototype goal: Achieve 1% FWHM energy resolution at 2.458 MeV, ¹³⁶Xe $Q_{\beta\beta}$.

IRN Neutrino

Introduction **Current Phases**

- First phase with Argon as detector medium and ²¹⁰Po as α source.
 - Electronics and data acquisition
 - Sensor characterisation and improvement
 - Light readout¹
- Second phase with Xenon as detector medium and ²¹⁰Po as α source.
 - Gas purity development
 - Gas recirculation and recovery
 - Exploring CPC² solution

¹ Nucl.Instrum.Meth.A 1028 (2022) 166382 [arXiv:2201.12621] ² CPC: Cylindrical Proportional Counter

Pierre Charpentier

Current prototype goal: Achieve 1% FWHM energy resolution at 2.458 MeV, $^{136}Xe Q_{\beta\beta}$.

IRN Neutrino

Experimental setup Prototype setup evolution at LP2I Bordeaux

SPC-1 (2018) 40 cm Ø Up to 1 bar¹

¹ No Pressure certification ² Pressure certification

Pierre Charpentier

CPC-1 (2022) 1m x 37 cm Ø Up to 1 bar¹

Made at

17/11/2022

IRN Neutrino

Ourification:

- High purity is a strong requirement.
- Circulation inside cold getters.
- Recirculation:
 - Recirculation system.
 - Controlled flow.
- Recovery: First design by
 - Creation of a cryopumping system.
 - Pressure controlled valve.

Pierre Charpentier

Output Purification:

- High purity is a strong requirement.
- Circulation inside cold getters.
- Recirculation:
 - Recirculation system.
 - Controlled flow.
- Recovery: First design by
 - Creation of a cryopumping system.
 - Pressure controlled valve.

Pierre Charpentier

17/11/2022

IRN Neutrino

Output Purification:

- High purity is a strong requirement.
- Circulation inside cold getters.
- Recirculation:
 - Recirculation system.
 - Controlled flow.
- Recovery: First design by
 - Creation of a cryopumping system.
 - Pressure controlled valve.

Pierre Charpentier

17/11/2022

IRN Neutrino

Output Purification:

- High purity is a strong requirement.
- Circulation inside cold getters.
- Recirculation:
 - Recirculation system.
 - Controlled flow.
- Recovery: First design by

- Creation of a cryopumping system.
- Pressure controlled valve.

Pierre Charpentier

IRN Neutrino

Output Purification:

- High purity is a strong requirement.
- Circulation inside cold getters.
- Recirculation:
 - Recirculation system.
 - Controlled flow.
- Recovery: First design by

- Creation of a cryopumping system.
- Pressure controlled valve.

Pierre Charpentier

Hot getter coming in 2023 ...

IRN Neutrino

Experimental setup

CPC

Since May 2022 a new prototype is under study. A CPC exploiting the existing electronic chain, pumping and gas management system.

- Inox Tube: 1m50 x 20cm Ø
- Copper cathode: 1m x 17.5 cm Ø
- Tungsten anode: 20 µm Ø
- ²¹⁰Po source

Electric Field:

- SPC: $\propto \frac{1}{n^2}$
- CPC: $\propto \frac{1}{r}$ (far from the edges)

IRN Neutrino

Latest Improvement

Updated Argon Result: SPC – Proportional

Former published¹ measurement with SPC-1 in ArP2² spanned from 200 mbar to 1.1 bar using ²¹⁰Po α of 5.3 MeV.

New measurement with SPC-2:

- Measurement up to 3 bar in proportional mode.
- Resolution between 1% and 1.3%.
- Anode radius: 1 mm.
- Limits:
 - HV: with small radius anode the electric field is too weak to collect all electrons at the cathode.
 - Gas purity: at higher pressure even small electronegative impurities induce important signal reduction.

¹ JINST 16 (2021) 03, P03012 [arXiv:2007.02570]

² ArP2: Argon (98%) and CH₄ (2%) mix

Pierre Charpentier

IRN Neutrino

Latest Improvement Updated Argon Result: SPC – Ionisation

- SPC-2: Resolution measure for ²¹⁰Po α of 5.3 MeV.
- is to use a larger sensor tip.
- The downside is a lower gain on the signal and thus a ionisation working mode.
- Anode with 3 mm radius at 1 bar:
 - HV: 700 V instead of 1900 V in proportional
 - Spread: 2.5 ADU \rightarrow DAQ limitation

The electric field at the cathode is too weak to collect all the charges. A workaround **Best Result** SPC ionisation Entries Entries 45 Mean Std Dev 35 ⊢ Gain = 125⊢ HV = 700V20 FWHM resolution = 8.2% 15 10 5 80 70 90 110 100

Integral: ~70 ADU \rightarrow resolution ~8% FWHM independently of the gas pressure

IRN Neutrino

Latest Improvement **CPC** Argon result

for the same HV compared to the SPC.

First measurement in proportional mode (1 bar, 900 V):

1.2% resolution FWHM.

Test in ionisation mode (1 bar, 200 V):

• 4.9% resolution FWHM.

This result is better with respect to the SPC since such resolution is dominated by baseline fluctuation which is much smaller by decoupling HV and signal.

First tests with ArP2 show a much lower noise due to the separation of the signal from the HV. The 1/r electric field dependence results in a higher field at the cathode

IRN Neutrino

First Xenon Results SPC Xenon: Main Difficulties

Switching from Ar to Xe implied a lot of challenges to overcome. Aside from the previously discussed technical consideration: Gain (ne) Argon

- Xe electrons drift time is one order of magnitude larger than Ar.
- Electronegative impurities become more
 critical. Purity is paramount.
- A stronger electric field is needed across the whole medium.
 - Higher $HV \rightarrow$ higher noise.
 - Larger anode \rightarrow lonisation mode only.

IRN Neutrino

250 mbar

- HV scan: 800 V up to 1400 V
- Optimal: 1300 V
 - Integral: 118 ADU
 - Sigma: 1.9 ADU
 - Resolution: 3.8%

Higher pressure measurement would require a gas purity level that is not achieved yet with the current setup. Even after several days of recirculation through the getters, electron attachment is still present.

Resolution: 7%

First measurement: 500 mbar; 900 V; 24 hours of recirculation. Still dominated by attachment issue...

- Image: But 2.3% of resolution in proportional mode.
- Down to 1.8% if a rise time cut is applied to reject α particles with partial deposit.

Second measurement: 1 bar; 1200 V; 48 hours of recirculation.

Attachment reduced, thus integral has increased and it is less direction dependent.

• 2.9% of resolution. Down to 1.8% if a rise time cut is applied

IRN Neutrino

First measurement: 500 mbar; 900 V; 24 hours of recirculation.

- Still dominated by attachment issue...
- In But 2.3% of resolution in proportional mode.
- Obvious Down to 1.8% if a rise time cut is applied to reject α particles with partial deposit.

Second measurement: 1 bar; 1200 V; 48 hours of recirculation.

- Attachment reduced, thus integral has increased and it is less direction dependent.
- 2.9% of resolution. Down to 1.8% if a rise time cut is applied

17/11/2022

IRN Neutrino

First measurement: 500 mbar; 900 V; 24 hours of recirculation.

- Still dominated by attachment issue...
- In But 2.3% of resolution in proportional mode.
- Down to 1.8% if a rise time cut is applied to reject α particles with partial deposit.

Second measurement: 1 bar; 1200 V; 48 hours of recirculation.

- Attachment reduced, thus integral has increased and it is less direction dependent.
- 2.9% of resolution. Down to 1.8% if a rise time cut is applied

17/11/2022

IRN Neutrino

First measurement: 500 mbar; 900 V; 24 hours of recirculation.

- Still dominated by attachment issue...
- In But 2.3% of resolution in proportional mode.
- Output Down to 1.8% if a rise time cut is applied to reject α particles with partial deposit.

Second measurement: 1 bar; 1200 V; 48 hours of recirculation.

- Attachment reduced, thus integral has increased and it is less direction dependent.
- 2.9% of resolution. Down to 1.8% if a rise time cut is applied.

IRN Neutrino

First Xenon Results CPC Xenon: Cosmic Background

- Output Content SPC, the geometry and orientation of our CPC prototype makes it $\widehat{\underline{g}}$ more sensible to cosmic muons background.
- The energy deposit of a muon in Xe at 1 § bar is significantly enough degrade the energy resolution of the α particles.
- This explain the right hand tail of the CPC reconstructed integral distribution.
- Nevertheless the final experiment shall take place in underground facilities, avoiding such inconveniences.

Pierre Charpentier

IRN Neutrino

First Xenon Results CPC Xenon: Cosmic Background

- Output Content SPC, the geometry and orientation of our CPC prototype makes it $\widehat{\mathbf{P}}$ more sensible to cosmic muons background.
- The energy deposit of a muon in Xe at $1\bar{a}$ bar is significantly enough degrade the energy resolution of the α particles.
- This explain the right hand tail of the CPC reconstructed integral distribution.
- Nevertheless the final experiment shall take place in underground facilities, avoiding such inconveniences.

IRN Neutrino

First Xenon Results CPC Xenon: Cosmic Background

- Output Content SPC, the geometry and orientation of our CPC prototype makes it more sensible to cosmic muons background.
- The energy deposit of a muon in Xe at 1 bar is significantly enough degrade the energy resolution of the α particles.
- This explain the right hand tail of the CPC ¹⁰⁰ reconstructed integral distribution.
- Nevertheless the final experiment shall of take place in underground facilities, avoiding such inconveniences.

Pierre Charpentier

IRN Neutrino

- while the CPC has reached 1.2% up to 1 bar.
- 1.4 % is obtained at 1 bar in CPC.
- resolution goal. Hot getter coming in 2023.
- Test of a small CPC up to 40 bar in Xenon in 2023.

The SPC and CPC geometries were tested and compared in both Ar and Xe.

R2D2 new SPC setup allows to obtain resolution under 1.4% in Ar up to 3 bar

The first measurement in Xenon were performed with success and resolution of

Some efforts remain, especially concerning gas purity which is crucial for the 1%

IRN Neutrino

More infos: https://r2d2.in2p3.fr

Pierre Charpentier

The End

17/11/2022

IRN Neutrino