

Reminder : what is Hyper-K ?

• <u>Next generation of neutrino observatory in Japan→ construction 2020-27</u>

71 m

 \rightarrow A 260 kton water Cherenkov detector \rightarrow <u>Fiducial Mass ~ 8 x SK.</u>

Super-Kamiokande

68 m

	Super-K	Hyper-K (1st tank)
Site	Mozumi	Tochibora
Number of ID PMTs	11,129	20,000
Photo-coverage	40%	20 %(x2 sensitivity)
Mass / Fiducial Mass	50 kton / 22.5 kton	260 kton / 187 kton

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u>: Constrains SN models.
 Relic SNv: Constrains cosmic star
- <u>Relic SNv</u>: Constrains cosmic star formation history

- Observe CP violation for leptons at 5σ
- Precise measurement of δ_{CP} .
- High sensitivity to v mass ordering.

Sensitivity to CP violation

• Assuming a run v:v = 1:3 @1.3MW (can be adjusted).

- <u>HK 10 years :</u> 5 σ sensitivity on 60% of δ_{CP} values.
- HK has world-best sensitivity to CP violation for the coming generation.

Matter/antimatter asymetry

• <u>v CP violation at low E maybe the key to matter/antimatter asymetry</u> \rightarrow Class of theories directly link low E δ_{CP} to matter/antimat. asymetry.

• First step is to actually measure if CP is violated...

Precision on sin δ_{CP}

↔ Precision on leptogenesis models

 $\begin{array}{l} \underline{\text{Lower limit for leptogenesis}:}\\ |\sin\theta_{13}\sin\delta_{\text{CP}}| \geq 0.11\\ \rightarrow |\sin\delta| \geq 0.78 \end{array}$

Flavour symetries

• Models of lepton flavour symetries could be also tested

 δ_{CP} = less well-known parameter \rightarrow Limits the model constraints.

Model separation requires :First separation : $\delta [\delta_{CP}] < 30^{\circ}$ Good separation : $\delta [\delta_{CP}] < 23^{\circ}$ Great separation : $\delta [\delta_{CP}] < 5^{\circ}$

 \rightarrow Precision of our experiments ?

Precise measurement of δ_{CP}

• After CPV is determined, accurate measurement of δ_{CP} will be crucial

→ Maximal CPV, leptogenesis, symetries of lepton's generations ...

 \rightarrow And in each, an excellent control of our systematics !

Precise measurement of δ_{CP}

Precise measurement of δ_{CP}

Updated systematic uncertainties

• <u>2 very complementary near detectors :</u>

& synergy with far detector.

• IN2P3 & CEA have leading roles

Hyper-K excavation

PMT production & delivery

- <u>The delivery of the 20k PMTs</u> of the experiment is on-going :
- $\sim 10 \%$ of PMTs checked : \rightarrow PMT quality does not change $_{150}^{200}$ wrt time & check production 100 issues. 50
 - \rightarrow 3 inspections :
 - 1. Visual (detect cracks...).
 - 2. Mesurements (high dark rate, impedance issue...)
 - 3. Long-term measurements.

Minor issues identified et solved with Hamamatsu : the production is on-going as expected, <u>no delay until now</u>.
 → The detector will take its first data in 2027.

Summary of proposed contributions

ND280 v2.0

top HA-TPC

SuperFGD

bottom HA-TPC

HK presented at 2021/10 IN2P3 scientific council :

• The ND280-upgrade.

- Time generation & clock distribution at Far Detector. \rightarrow See Lucile's talk at 2022/06 IRN.
- <u>CC-IN2P3 :</u> HK Tier 1 computing site.

Summary of proposed contributions

From 2022/03 : HK became an IN2P3 R&T master project.

<u>2022/10</u> : HK presented again to IN2P3 CS « pour avis » :

- The ND280-upgrade.
- PMT digitizer for the Far Detector.

 \rightarrow Collaboration chose an alternative (INFN) solution. See : CSIN2P3-2023

- Time generation & clock distribution at Far Detector.
- <u>CC-IN2P3 :</u> HK Tier 1 computing site.

<u>& export our leadership in low and high E sectors from SK/T2K → HK</u>

Some proposed contributions

Readout electronics assembly

<u>& test @CERN</u>

- Read-out electronics in watertight vessel under water.
 - Assembly at CERN.
 Test bench & tests
 → Can raise hand
 until spring 2023.

Reconstruction algorithms

• Upgrade algorithms from SK (< 15 year old) to HK

• <u>IWCD</u>

- Outer detector photosensors.
- Outer detector digitizer.
- Elevation mechanical system

 → Can raise hand until end of 2023.

Water Cherenkov Test Experiment

- A 4m x 4m Water Cherenkov @CERN.
- Precision measurement of Cherenkov profile w / known particle beam (e, μ,

→ Crucial to syst. uncertainties in SK & tomorrow in HK.

• Commissioning from <u>early 2024.</u>

ND280 Upgrade++, FD multi-PMT electronics ...

Conclusions

- Hyper-K will be the world-leading experiment in many aspects of neutrino physics for the next 20 years.
 → Today we solely focused on CPV and δ_{CP}.
- Construction & production are on-time, no delay since the start → HK will take its first data in 2027.
- **IN2P3 & IRFU teams plans to have a leading role**, building on their years of expertize in SK/T2K & hardware contributions.
- Other groups/collaborators inIN2P3/IRFU are welcome to participate to this extremely exciting experiment
 - \rightarrow <u>Hardware</u> : there are still some seats to be taken, before full production start in 2024-2025.
 - \rightarrow <u>Software</u> : we plan to host whole HK data at CC-Lyon : unique to hance to also lead the development of reconstruction algorithm.

Additional slides

HK far detector electronics

- The whole HK physic signal will rely on 20k PMTs of 50 cm.
- <u>PMT signal to be readout by electronics under water</u> :
 - \rightarrow 24 channels/PMTs read in one stainless steel box under water.

Clock generation & distribution LPNHE + IRFU

<u>LLR proposal</u> : develop the whole PMT Q & T digitization system \rightarrow Absolutely central role in HK !

Overview of the HKROC digitizer

- <u>HKROC is a waveform-like digitiser @40 MHz \rightarrow 1 point every 25 ns.</u>
 - \rightarrow Charge digitized by N = 1 \rightarrow 7 points (chosen by slow-control).

• <u>HKROC digitizer</u> : 24 PMT channels readout by 2 HKROC ASIC.

HKROC prototype v1

Trigger happens

<u>Started R&D in summer 2020</u>: Make a chip in 2 years → Challenging schedule : 1. Receive chip in Dec. 2021.

Example with N = 5

- 2. Provide tested chip by end of June 2022.
- No delay in 2 years : → Chip & board came back in Jan. 2022 (pandemic).

 \rightarrow Worked hard to finalize tests for June.

HKROC digitizer - Impact on physics

• <u>Large impact on physics :</u> v mass ordering & Supernova v.

HKROC digitizer - trigger & timing results

• HKROC-digitizer v1 received & completely tested in few months.

- Set threshold at 1/6 p.e.
- <u>Hit efficiency :</u>
 90 % for 1/5 p.e events
 ~100 % if ≥ 1/4 p.e
- <u>Very low noise :</u> < 1 Hz.
- <u>TDC resolution :</u>
 150 ps @1 p.e [300 ps required]
 ≤ 30 ps @ 10 p.e [200 ps required]

 \rightarrow Excellent agreement with HK requirements.

HKROC digitizer - Charge results

• <u>Charge linearity $< \pm 1\%$ </u> [1 to 1250 p.e.]

Charge resolution :

<0.1 p.e @< 10 p.e, <1 % otherwise.

 \rightarrow All characteristics fulfill HK requirements & confirmed w / PMT. \rightarrow Large improvements w / HKROC much beyond requirements by the collaboration

 \rightarrow <u>Ex</u>: dead-time \downarrow **from**

 $1 \ \mu s \rightarrow 30 \ ns.$

 HKROC project has been on-time & is a huge technical achievement that has only been possible thanks to the great collaboration between the IRFU, OMEGA & LLR + financial support from X & IN2P3.

Summary of the digitizer measurements

Item measured	Performances	
Trigger efficiency at $1/6$ p.e.	> 90% for 1/5 p.e signals	
	100% for $\geq 1/4$ p.e signals	
Trigger noise at $1/6$ p.e.	< 1 Hz (No trigger observed in 10 s)	
TDC resolution	150 ps at 1 p.e, 70 ps at 5 p.e, 25 ps > 10 p.e	
	Validated with PMT	
	<0.5% in high & medium gain channels	
Charge linearity	< 1% in low gain channel up to 1250 p.e	
	Validated with PMT	
	< 0.1 p.e for signals up to 10 p.e	
	< 1% for signal 40 - 300 p.e and > 750 p.e	
Charge resolution	< 2.4% for all other cases.	
	Will be improved by reducing the unnecessary voltage division.	
	Validated with PMT	
Dead-time	\leq 30 ns for two signals of same amplitude	
& pile-up	≤ 30 ns for a prompt ≤ 5 p.e and secondary of 1 p.e	
	$<1~\mu{\rm s}$ for a prompt signal ≤ 850 p.e and secondary 1 p.e	
Maximal	415 kHz in normal mode	
hit-rate	950 kHz in SN-mode	
w/ 100% eff.	Potential extension beyond to be studied.	
	Hit probability in neighbouring channel	
Cross-talk	of a 1250 p.e signal is $< 0.1\%$	
	Note that cross-talk found at ASIC level, but cut	
	by FPGA. Identified and will be removed in ASIC v2.	
Maximal	415 kHz in normal mode	
hit-rate	950 kHz in SN-mode	
w/ 100% eff.	Potential extension beyond to be studied.	
Temperature	time resolution $\Delta T = 1 \text{ ps/}^{\circ}\text{C}$	
$dependency^2$	gain variation $\Delta Q = 0.05\%/^{\circ}$ C (no correction)	
Resistance to HV Unprotected ASIC received 10 ⁸ 5V injection		
	without any impact on performances	

The IWCD

• New Intermediate Water Cherenkov detector (E61):

The IWCD

• Water Cherenkov : Excellent v_{e} / v_{μ} separation

→ Extremely precise measurement of $(v_e / v_\mu) / (\overline{v_e} / \overline{v_\mu})$.

- Loaded with Gd for n-tagging
 → Enhanced v/v separation.

 → Measure n-multiplicy
- Sites under survey (balance between event rate / pile-up vs pit depth)

Reconstructed neutrino energy (MeV)

• ND280 + IWCD totally complementary to reach systematics \leq 3 %.

Prospects for the HKROC digitizer

- <u>2 other digitizers were competing for HK :</u> QTC (Japan), discrete (Italy).
 → Unfortunately, HKROC not chosen as primary solution for HK.
- <u>Summary of the review:</u>
- 1. All 3 solutions for HK digitization are suitable both in terms of minimal requirements & schedule.
- 2. The HKROC team has clearly shown the large advantages for physics.
 3. The HK management <u>preferred an already final solution with less</u> <u>impact on physics compared to HKROC which will be finalized in 8</u> <u>months</u> → The main reason we were not selected was that we did not had a on-shelves solution ready (others had).
- HKROC has been built to be a <u>waveform digitizer for any PMT-based</u> <u>experiment in the next 10-15 years</u>.

 \rightarrow We will finalize the HKROC development all the way to a modular front-end board.

HKROC digitizer timeline

- \rightarrow First complete digitizer board in spring 2023.
- NIM paper : Being prepared for a publication at the end of spring 2023.
 → Based on HKROC v2 & prototype board v1.
- <u>From now :</u> starts contact with other experiment using PMTs : IceCube gen2, potential HK upgrade, Intermediate Water Cherenkov Detectors.
- Allows the LLR to develop **a board that could be used in future also for all HKROC cousins** (SiPM version etc.).

The computing proposal

• <u>Option 5 :</u> host a **complete Tier-1** data of HK (scenario 2).

 \rightarrow And develop all production tools on the cluster.

• <u>Pros :</u>

1. No other group has announced the capacity of a full Tier 1 so far.

2. Having all data in France offers a great visibility.

3. Complete synergy with our goal to lead the analyses in both low and high energy sectors.

 \rightarrow May require fraction of FTE from a software engineer at LLR. ²⁸

Solar neutrinos

Physics case

- \mathcal{V} • MSW effect in the Sun Non-standard interactions in the Sun. Supernovae neutrinos
 - <u>Direct SNv</u> : Constrains SN models.
 - <u>Relic SNv</u>: Constrains cosmic star formation history

Supernovae neutrinos

- <u>Unique probe for supernovae v</u>: 99 % of SN energy $\rightarrow v$.
 - But direct v detection very rare.
 - HK also sensitive to extra-galactic SNv from Andromeda !
- Andromeda Milky way -100kpc -1Mpc
- SN-relic neutrino \rightarrow new constraints on cosmic star history \rightarrow May be first detected in SK-Gd.

 \rightarrow But spectrum determined by HK : Low energy \leftrightarrow Probe older stars

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u> : Constrains SN models.
- <u>Relic SNv</u> : Constrains cosmic star formation history

GUT and proton decay

 π^0

p

- Probe Grand Unified Theories at a new scale through proton decay.
- <u>Golden channel</u> : $p \rightarrow e^+ + \pi^0 \rightarrow Almost background free !$
 - \rightarrow Requires 2 γ & reconstructed energy = Invariant M_P
 - \rightarrow <u>Bkg</u> : Atmospheric v producing e.g. a π^0 .

Atmospheric neutrinos

Mass-hierarchy can be accessed through matter effects
 → The longer the baseline, the higher the effects

- Mass hierarchy determined with upward-going multi-GeV v_e sample : atm. baseline ≤ 13000 km $\gg 295$ km accelerator baseline
 - Normal hierarchy : enhancement of $\nu_{\mu} \rightarrow \nu_{e}$.
 - <u>Inverted hierarchy</u> : enhancement of $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$.

Combination of atmospheric + beam v

- Even if MH is not known when HK starts \rightarrow Sensitivity to CPV is little affected if we add atmospheric v.
- <u>MH would be determined by :</u>
 - \rightarrow HK after \geq 6-10 years via atmospheric.
 - \rightarrow <u>DUNE</u> : after 1-2 years.

