SuperNEMO demonstrator status

Xalbat Aguerre Emmanuel Chauveau, Christine Marquet IRN Neutrino 17/11/2022

supernemo

collaboration

Summary

Neutrinoless double beta decay

SuperNEMO status

Calorimeter studies (my work):

- Absolute energy calibration
- Relative energy calibration
- Background studies

Summary

Neutrinoless double beta decay

SuperNEMO status

Calorimeter studies (my work):

- Absolute energy calibration
- Relative energy calibration
- Background studies

Neutrinoless double beta decay

Forbidden by the Standard Model (Leptonic number violation)

If observed \Rightarrow proof of the **Majorana nature** of neutrinos (**v** = \bar{v}):

- Could be responsible for leptogenesis with CP violation
- Could bring information about the neutrino absolute masses
- Could answer the mass hierarchy

Very high half life (> 10^{24} y) \rightarrow Need of very small background

Discrimination between 0\nu\beta\beta and 2\nu\beta\beta with the sum of e⁻ energies \rightarrow Need a very good energy resolution!!!

Neutrinoless double beta mechanisms

V-A current

V+A current

Different neutrinoless double beta mechanisms:

- V-A current (all experiments half-life calculation are based on these mechanisms)
- V+A current
- Majoron emission
- R-parity violation

Mechanisms could be distinguished thanks to:

- Individual energy of each e[−]
- Angular distribution

SuperNEMO technique is able to differentiate them

R. Arnold, et al., Probing new physics models of neutrinoless double beta decay with SuperNEMO, Eur. Phys. J. C 70 (2010) 927

IRN neutrino 17/11/2022

Summary

Neutrinoless Double beta decay

SuperNEMO status

Calorimeter studies (my work):

- Absolute energy calibration
- Relative energy calibration
- Background studies

SuperNEMO technique

- **1.** ββ source foil: free choice of most isotopes
- 2. Tracker: charged particle trajectory
- 3. Calorimeter: energy of each particle

Advantages:

Access to the **full kinematics** of the decay:

- Golden 0vββ events
- Background modelling (dedicated channels)
- Differentiate the 0vββ mechanisms
- High precision nuclear studies with $2\nu\beta\beta$ events

@Laboratoire Souterrain de Modane (under 4800 m.w.e)

Xalbat Aguerre

IRN neutrino <u>17/11/2022</u>

Source foil

Source foil in the middle of the detector

6.23 kg of ⁸²Se ($\beta\beta$ isotope) High Q_{$\beta\beta$} = 2.998 MeV High T_{1/2}^{2v} = 9.4 · 10¹⁹ y Thickness: ~280 µm Radiopurity (measured by BiPo detector):

- ²⁰⁸TI < 25 μBq/kg
- ²¹⁴Bi < 290 µBq/kg

Tracker

2034 drift cells (14970 wires of 40-50 μ m) in Geiger mode

3D track reconstruction

Fully installed and commissioned

Top view of the tracker with different particle tracks

Calorimeter

One of the calorimeter wall prior detector's closure

712 Optical Modules (scintillator + photomultiplier)

8" optical module

- Main walls: 440 optical modules with 8" PMT 8% FWHM @1 MeV
- <u>Sides / top / bottom (veto)</u>:
 272 optical modules with 5" PMT
 12-15% FWHM @ 1 MeV

Time resolution < 400 ps for e^{-} at 1 MeV

Status of the demonstrator

Today: Source foil, Tracker and Calorimeter ready

Still need to install part of the shielding:

Anti Rn tent - Done

Gamma shielding - Early 2023 Iron plates (261 t) Neutron shielding - Mid-2023. Mix of water (57.6 m³) and Polyethylene (15 m³)

18 cm iron shield

Status of the demonstrator

Today: Source foil, Tracker and Calorimeter ready

RUN 812 // TRIGGER 577

Summary

Neutrinoless Double beta decay

SuperNEMO status

Calorimeter studies (my work):

- Absolute energy calibration
- Relative energy calibration
- Background studies

Energy calibration of the calorimeter

3 Methods of calibration:

Absolute calibration with ²⁰⁷Bi sources (Nominal method) Absolute calibration with LSM ambient background run Relative calibration using LED light (Light Injection system)

Nominal absolute calibration: ²⁰⁷Bi Sources

42 movable ²⁰⁷Bi sources (automatic system) (IC e⁻ at 482, 976 and 1682 keV) Need the tracker to **tag the e⁻ of the** ²⁰⁷Bi. Started this method recently. More to come next time!

Xalbat Aguerre

Calibration performed while waiting for the nominal method using LSM ambient background

Main components of ambient background visible above 1 MeV:

- ⁴⁰K (γ 1.4 MeV)
- ²¹⁴Bi (many γ between 1-2.4 MeV)
- ²⁰⁸TI (γ 2.6 MeV)

Calibration performed while waiting for the nominal method using LSM ambient background

Main components of ambient background visible above 1 MeV:

- ⁴⁰K (γ 1.4 MeV)
- ²¹⁴Bi (many γ between 1-2.4 MeV)
- ²⁰⁸TI (γ 2.6 MeV)

MC simulation of these 3 components (from the LSM walls)

3 reference PDF (probability density function) used for calibration

Calibration performed while waiting for the nominal method using LSM ambient background

(u.a / MeV)

Fitting with: $\alpha \times (A_{\kappa} PDF_{\kappa} + A_{Bi} PDF_{Bi} + A_{Ti} PDF_{Ti})$ (3 degrees of freedom : 1 normalization per MC components) Iterate for different calibration parameter α (α = energy scale) Best α deduced with the minimal Chi2 (1 α = 1 optical module)

Repeat for each optical modules

View of α for the 2 main calorimeter optical modules (square = optical module)

IRN neutrino 17/11/2022

Calibration performed while waiting for the nominal method using LSM ambient background

🕻 (u.a / MeV)

Fitting with: $\alpha \times (A_{\kappa} PDF_{\kappa} + A_{Bi} PDF_{Bi} + A_{Ti} PDF_{Ti})$ (3 degrees of freedom : 1 normalization per MC components) Iterate for different calibration parameter α (α = energy scale) Best α deduced with the minimal Chi2 (1 α = 1 optical module)

View of α for the 2 main calorimeter optical modules (square = optical module)

IRN neutrino 17/11/2022

Calibration performed while waiting for the nominal method using LSM ambient background

Fitting with: $\alpha \times (A_{\kappa} PDF_{\kappa} + A_{Bi} PDF_{Bi} + A_{Ti} PDF_{Ti})$ (3 degrees of freedom : 1 normalization per MC components) Iterate for different calibration parameter α (α = energy scale) Best α deduced with the minimal Chi2 (1 α = 1 optical module)

View of α for the 2 main calorimeter optical modules (square = optical module)

Repeat for each optical modules

Calibration performed while waiting for the nominal method using LSM ambient background

Fitting with: $\alpha \times (A_{\kappa} PDF_{\kappa} + A_{BI} PDF_{BI} + A_{TI} PDF_{TI})$ (3 degrees of freedom : 1 normalization per MC components) Iterate for different calibration parameter α (α = energy scale) Best α deduced with the minimal Chi2 (1 α = 1 optical module)

View of α for the 2 main calorimeter optical modules (square = optical module)

IRN neutrino 17/11/2022

Calibration performed while waiting for the nominal method using LSM ambient background

Fitting with: $\alpha \times (A_{\kappa} PDF_{\kappa} + A_{Bi} PDF_{Bi} + A_{Ti} PDF_{Ti})$ (3 degrees of freedom : 1 normalization per MC components) Iterate for different calibration parameter α (α = energy scale) Best α deduced with the minimal Chi2 (1 α = 1 optical module)

View of α for the 2 main calorimeter optical modules (square = optical module)

IRN neutrino 17/11/2022

LED light sent to each of the calorimeter's 712 LED light calibrated with **5 Reference Optical** Optical Modules to monitor their gain evolution Modules external to the detector Fibre X712 Fibre X10 **UV LED** system Calibration Light control Permanent radioactive sources (²⁰⁷Bi + ²⁴¹Am) **SuperNEMO** Additional Reference optical module

Very fast way to calibrate the calorimeter (few minutes) doable on daily basis, but relative calibration

External Reference optical module calibration

Using LSM ambient background + ²⁰⁷Bi sources

(to constraint the spectrum shape)

Long data run (15.6h) used as *template* PDF (1 PDF for each of 5 reference optical modules)

Use each template PDF to follow the gain variation of each reference optical module

External Reference optical module calibration

Scale **template PDF(k** × **charge)** for various k by steps of 0.01 % (k = gain variation scale factor)

Fit dataset for each scaled template PDF (1 D.O.F = normalization)

External Reference optical module calibration

Scale **template PDF(k** × **charge)** for various k by steps of 0.01 % (k = gain variation scale factor)

Fit dataset for each scaled template PDF (1 D.O.F = normalization)

External Reference optical module calibration

Scale **template PDF(k** × **charge)** for various k by steps of 0.01 % (k = gain variation scale factor)

Fit dataset for each scaled template PDF (1 D.O.F = normalization)

External Reference optical module calibration

Scale **template PDF(k** × **charge)** for various k by steps of 0.01 % (k = gain variation scale factor)

Fit dataset for each scaled template PDF (1 D.O.F = normalization)

Scale **template PDF(k** × **charge)** for various k by steps of 0.01 % (k = gain variation scale factor)

Fit dataset for each scaled template PDF (1 D.O.F = normalization)

Calibration of the external reference optical module over the last 5 months

Cross-check with alpha sources (²⁴¹Am) ongoing

Optimization of calibration run duration

Error on k calibration factor (calculated at 1σ) for different run durations

Run duration	1 min	5 min	10 min	30 min	60 min	
Error on k	0.34 %	0.15 %	0.10 %	0.06 %	0.04 %	

< 1% from 1 minute!!

New calibration method with data template PDF of reference optical modules: **Precise and fast (10 minutes) gain measurement**

Fit of LSM ambient background with MC simulations

Outcome of the absolute calibration with LSM background:

Measurement of the **activity** of the ambient γ sources (⁴⁰K, ²⁰⁸Tl and ²¹⁴Bi)

From: $\alpha \times (A_{k}PDF_{k} + A_{Bi}PDF_{Bi} + A_{TI}PDF_{TI})$

Estimated ²⁰⁸TI activity (Bq) > 2 MeV of the main calorimeter (each square represent an optical module)

- Higher rate on the side closer to the rock of the lab wall (left plot)

Estimated ²⁰⁸TI activity (Bq) > 2 MeV of the main calorimeter (each square represent an optical module)

- Higher rate on the side closer to the rock of the lab wall (left plot)
- Higher rate at border/side due to missing self-shielding by other optical modules

Estimated ²⁰⁸TI activity (Bq) > 2 MeV of the main calorimeter (each square represent an optical module)

Average main wall: 1.2 ± 0.2 Bq (data) VS ~2.3 Bq (expected using Ohsumi & all, 2002 - D. Malczewski & all 2012)

No extra activity is seen, and we provide a new ²⁰⁸TI activity measurement around SuperNEMO

Conclusion

The demonstrator has started taking data:

- Calorimeter and tracker ready
- Background studies in progress
- Gamma shield early 2023 and neutron shield mid 2023
- Double beta runs mid 2023

3 Methods of energy calibration of the calorimeter:

- Absolute calibration with ²⁰⁷Bi sources (Nominal method) starting now.
- Absolute calibration with LSM ambient background:
 - New technique using MC simulations was developed, allowing both energy calibration and gamma flux measurement for all 712 optical modules
- Relative calibration with LED light:
 - Another technique developed to calibrate external reference optical modules based on high stat reference spectrum: Reaching statistical error of 0.1% with 10 minutes

9 countries, 21 Laboratories

Thank you !

IRN neutrino 17/11/2022