

POLYTECHNIQU

Jaafar Chakrani (LLR)

What do Long-Baseline Experiments measure?

• Mass and flavor states mixing: $\ket{
u_i} = \sum_{lpha=e,\mu, au} U_{lpha i} \ket{
u_lpha}$

$$U = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \ 0 & 1 & 0 \ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix} & s_{ij} = \sin(heta_{ij}) \ s_{ij} = \sin(heta_{ij}) \end{pmatrix}$$

- Long-baseline experiments are sensitive to:
 - \circ Atmospheric parameters $(heta_{23},\Delta m^2_{32})$ through $u_{\mu}/ar{
 u}_{\mu}$ disappearance

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

 $\circ \quad (\delta_{CP}, heta_{23})$ through $u_e/ar{
u}_e$ appearance

$$P(\overleftarrow{\nu}_{\mu} \to \overleftarrow{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) (\mp) O(\delta_{CP})$$

What do Long-Baseline Experiments measure?

• Mass and flavor states mixing: $\ket{
u_i} = \sum_{lpha=e,\mu, au} U_{lpha i} \ket{
u_lpha}$

$$U = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \ 0 & 1 & 0 \ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & 0 \ 0 \ \end{bmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} = c_{ij} \\ c_{ij} = c_$$

- Long-baseline experiments are sensitive to:
 - Atmospheric parameters $(\theta_{23}, \Delta m_{32}^2)$ through $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance

$$P(\overleftarrow{\nu}_{\mu} \to \overleftarrow{\nu}_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

$$\circ \quad (\delta_{CP}, heta_{23})$$
 through $u_e/ar{
u}_e$ appearance

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E}\right) (\mp) O(\delta_{CP})$$

 $s_{ij} = \sin(\theta_{ij})$ If $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ then matter and anti-matter
could behave differently in
the lepton sector $\rightarrow CP \text{ violation!}$

5

 $\cos(\theta_{ii})$

This could shed light on the matter/anti-matter asymmetry in the Universe

Jaafar Chakrani (LLR)

What do Long-Baseline Experiments measure?

- Proton beam on graphite target
- Produced hadrons decay into muon (anti-)neutrinos

- Proton beam on graphite target
- Produced hadrons decay into muon (anti-)neutrinos

 $\substack{\Phi_{\nu}(A.U.)\\1}$

-0

- Measure unoscillated neutrino flux:
 - Electron neutrino and wrong-sign contaminations
 - Neutrino-nucleus interactions
- \rightarrow Reduce systematic uncertainties

Near detector complex

Jaafar Chakrani (LLR)

T2K experiment

Jaafar Chakrani (LLR)

• Far/Near ratio does not fully cancel systematic uncertainties, *e.g.*:

- Far/Near ratio does not fully cancel systematic uncertainties, *e.g.*:
 - Flux model different at ND vs. FD due to geometry and oscillation

- Far/Near ratio does not fully cancel systematic uncertainties, *e.g.*:
 - Flux model different at ND vs. FD due to geometry and oscillation
 - Different detectors, *i.e.* different acceptance and efficiencies

- Far/Near ratio does not fully cancel systematic uncertainties, *e.g.*:
 - Flux model different at ND vs. FD due to geometry and oscillation
 - Different detectors, *i.e.* different acceptance and efficiencies
 - Mainly $\nu_{\mu}(\bar{\nu}_{\mu})$ at ND interacting with CH \rightarrow use model to infer interactions of $\nu_{\mu}/\nu_{e}(\bar{\nu}_{\mu}/\bar{\nu}_{e})$ on H₂O

- Far/Near ratio does not fully cancel systematic uncertainties, *e.g.*:
 - Flux model different at ND vs. FD due to geometry and oscillation
 - Different detectors, *i.e.* different acceptance and efficiencies
 - Mainly $\nu_{\mu}(\bar{\nu}_{\mu})$ at ND interacting with CH \rightarrow use model to infer interactions of $\nu_{\mu}/\nu_{e}(\bar{\nu}_{\mu}/\bar{\nu}_{e})$ on H₂O
- ➡ T2K's approach is to propagate the constraints on the flux and the neutrino interaction models from the ND to the FD

Updates to the oscillation analysis

Dataset

Dataset

Jaafar Chakrani (LLR)

Jaafar Chakrani (LLR)

Dataset

Jaafar Chakrani (LLR)

New flux model uncertainties

- The neutrino beam is obtained from 30 GeV protons fired at a graphite target, and the polarity of the horns allows to choose neutrino or antineutrin beam
- External measurements from NA61/SHINE on T2K replica target allow to reduce high-E uncertainties

New neutrino interaction model uncertainties

New neutrino interaction model uncertainties

Significant improvements to the interaction model:

- Charged-Current Quasi-Elastic (CCQE): based on the Benhar Spectral Function model built from electron scattering data New uncertainties on: (see talk from previous IRN Neutrino)
 - The nuclear shell structure
 - Low energy transfer region with Pauli Blocking and optical potential

Proton tagging uncertainties:

- Nucleon FSI
- Improved description of 2p2h pn/nn pairs contribution

• CC Resonant (CCRES):

- New tune to bubble chamber data
- New resonance decay uncertainties
- Effective inclusion of binding energy uncertainty

New Near Detector samples

Jaafar Chakrani (LLR)

Near Detector fit

New Far Detector sample

Anti-neutrino mode

Muon like

New Far Detector sample

Jaafar Chakrani (LLR)

New Far Detector sample

New multi-ring muon-like CC1 π sample

Jaafar Chakrani (LLR)

Disappearance: atmospheric parameters constraints

- World leading measurements of the atmospheric parameters
- Still compatible with both octants, with a weak preference for the upper octant

Disappearance: atmospheric parameters constraints

- World leading measurements of the atmospheric parameters
- Still compatible with both octants, with a weak preference for the upper octant
- The difference w.r.t. the 2020 results is largely due to the updated interaction model

Appearance: CP-violating phase constraints

 2020 conclusions unchanged: preference for ~maximal CP violation and exclusion of CP-conserving values at 90% C.L

Appearance: CP-violating phase constraints

- 2020 conclusions unchanged: preference for ~maximal CP violation and exclusion of CP-conserving values at 90% C.L
- Slightly reduced constraints w.r.t. 2020 results due to the updated interaction model

Joint fits

T2K-SK

• Common detector for the two experiments

- A joint fit could **resolve the degeneracy** between the mass ordering and the CP-violating phase
- First data result expected in less than a year!

T2K-NOvA

• Experiments with different baselines, beam energy, and detector technologies

Experimental Property	T2K	N0vA
Proton Beam Energy	30 GeV	120 GeV
Baseline	295 km	810 km
Peak neutrino energy	0.6 GeV	2 GeV
Detection Technology	Water Cherenkov	Segmented liquid sintillator bars

• The two collaborations are currently working on the joint fit, with a special care about the correlations between systematic uncertainties

T2K ND280 Upgrade Overview

- Super-FGD: 2.10⁶ 1 cm³ scintillator cubes
- New high-angle TPCs
- New Time Of Flight detector

The goal is to reduce the ND systematics with:

- Fully active target
- 4π acceptance for charged particles
- Lower proton momentum threshold (~300 MeV/c)
- Neutron kinematics reconstruction
- Larger statistics
- ↔ See expected performances in previous IRN talk

T2K ND280 U

- Super-FGD: 2.10⁶
- New high-angle TF
- New Time Of Flight

The goal is to reduce t Few pictures of the ongoing Super-FGDtarget assembly

- 4π acceptance for
- Lower proton mom
- Neutron kinematics
- Larger statistics
- See expected perfet

T2K ND280 U

- Super-FGD: 2.10⁶
- New high-angle T
- New Time Of Fligh

The goal is to reduce Few pictures of the ongoing Super-FGDtarget assembly

- 4π acceptance fo
- Lower proton mor
- Neutron kinematic
- Larger statistics
- ↔ See expected per

Jaafar Chakrani (LLR)

T2K ND280 U

- Super-FGD: 2.10⁶
- New high-angle 7

The goal is to reduce Few pictures of the ongoing Super-FGDtarget assembly

- 4π acceptance for
- Lower proton mol
- Neutron kinematic
- See expected per \hookrightarrow

T2K ND280 Upgrade Overview

- T2K performed a substantial update at each level of the oscillation analysis
- The oscillation measurement results show:
 - CP conservation is still excluded at 90% C.L., with a slightly weaker constraint due to the updated interaction model
 - Normal ordering and upper octant are weakly preferred
- A bright future ahead:
 - Joint fits with SK and NOvA experiments
 - Upgraded beamline and near detector

T2K Collaboration

T2K "hybrid" collaboration meeting, May 2022

