

The PTOLEMY project results and status

M Messina, INFN-LNGS researcher

OUTLINE

• Short physics introduction

• PTOLEMY detector concept

Conclusion and Outlook

The Gold-mine of Cosmologist

CMB: The oldest electromagnetic radiation in the universe

- Universe is expanding: Hubble's law: v = H₀D (~70 km/s/Mpc), 1919.
- Cosmic microwave background, Penzias & Wilson, 1964
- Abundance of **primordial elements**: ⁴He, ²H, ⁷Li (?)
- Galaxies morphology and stars populations in time
- Primordial gas cloud (without heavy elements), 2011

The Big Bang

V decoupling The present Universe

History of the Universe

emerges from an Ultra-dense and high temperature initial state

> Time of decoupling: 1 second neutron/proton ratio @start of nucleosynthesis Temperature: $T_{\nu}=1.95 \text{ K}$ Number density: $n_{\nu}=112/\text{cm}^{3}$ Velocity distribution: $<\vee_{\nu}>\sim T_{\nu}/m_{\nu}$

NEUTRINO FEATURES

• What we <u>do know</u> about neutrinos:

they are massive well measured Δm_i^2 cosmic neutrino background should be out there

• What we <u>don't know</u> about neutrinos: mass ordering absolute mass scale $(m_{\nu} < 0.8 eV)$ [KATRIN – Nature Phys. 2022, 2105.08533] mass ordering $(50meV < m_{light} \simeq m_e orm_{\tau})$ From Cosmology several limits at 95 % CL on Σm_{ν} from 0.56 to 0.11 eV

> cosmic neutrino background yet to be seen

WHERE WE ARE WITH DIRECT NEUTRINO MASS MEASUREMENT

STRICTLY CONNECTED TO THE PTOLEMY GOAL

THE KATRIN EXPERIMENT

~70 m

The KArlsruhe TRItium Neutrino experiment

MAC-E FILTER

FEATURES AND RESULTS

Best experimental limit on neutrino mass

m_e < 0.8 eV (95% CL) [Combined]

Sensitivity (5 years) ~ 0.2 eV (limited)

CNB target: Gaseous target, **30** μ **g** \rightarrow 3x10⁻⁶ events/year

REQUIREMENTS FOR CNB DETECTION

- LARGE TARGET, IO EVENTS/YEAR IF WE CONSIDER 100 G TARGET
- HIGH RATE (~10¹⁴ BQ) HANDLING
- FILTER COMPRESSION (~IM SIZE)

MEASUREMENT (0.05 EV)

- HIGH RESOLUTION ELECTRON ENERGY

VERY LOW TARGET INDUCED SMEARING

PTOLEMY - RELIC NEUTRINO DETECTION STRATEGY

DETECTION PRINCIPLE – CNB ON ³H

CROSS SECTION EVALUATION

Tritium has the largest product of capture cross section and lifetime

$${}^{3}\text{H} \rightarrow {}^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e} \qquad (Q \simeq 18.6 \text{ keV})$$
$$\nu_{e} + {}^{3}\text{H} \rightarrow {}^{3}\text{He}^{+} + e^{-}$$

Detailed evaluation on 2007 *JCAP 06 (2007) 015*

of $\sigma \times \tau$ renewed the dormant discussion on relic neutrino detection and paved the view to a possible experiment. Several authors confirmed the cross-section evaluation and added information:

R Lazauskas, P Vogel, C Volpe , J. Phys. G: Nucl. Part. Phys. 35 025001, AJ Long, <u>C Lunardini, JCAP 08 (2014) 038</u>

On 1962 S. Weinberg discussed the relic neutrino detection in a different physics framework, where Pauli suppression would deform the end-point of the electron spectrum.

PRACTICAL EXAMPLES

M.G. Betti et al., 2019

A NEW FILTER CONCEPT IS NEEDED

KATRIN -> POTLEMY filter B moves from the E direction to the perpendicular one.

Three channels well simulation

THE PTOLEMY PROJECT

A. Apponi,^{1, 2} M.G. Betti,^{3, 4} M. Borghesi,^{5, 6} A. Boscá,⁷ F. Calle,⁷ N. Canci,⁸ G. Cavoto,^{3, 4} C. Chang,^{9, 10} V. Chung,¹¹ A.G. Cocco,¹² A.P. Colijn,^{13, 14} N. D'Ambrosio,⁸ N. de Groot,¹⁵ M. Faverzani,^{5, 6} A. Ferella,^{8, 16} . Ferri,⁵ L. Ficcadenti,^{3,4} P. Garcia-Abia,¹⁷ G. Garcia Gomez-Tejedor,¹⁸ S. Gariazzo,¹⁹ F. Gatti,²⁰ C. Gentile,²¹ A. Giachero,^{5, 6} Y. Hochberg,²² Y. Kahn,^{10, 23} A. Kievsky,²⁴ M. Lisanti,¹¹ G. Mangano,^{12, 25} L.E. Marcucci,^{24, 26} D. Mariani,^{3,4} J. Martínez,⁷ M. Messina,⁸ E. Monticone,^{19,27} A. Nucciotti,^{5,6} D. Orlandi,⁸ F. Pandolfi,³
D. Parlati,⁸ J. Pedrós,⁷ C. Pérez de los Heros,²⁸ O. Pisanti,^{12,25} A.D. Polosa,^{3,4} A. Puiu,^{8,29} I. Rago,^{3,4} ⁷. Raitses,²¹ M. Rajteri,^{19, 27} N. Rossi,⁸ K. Rozwadowska,^{8, 29} I. Rucandio,¹⁷ A. Ruocco,^{1, 2} R. Santorelli,¹⁷ .F. Strid,³⁰ A. Tan,¹¹ C.G. Tully,¹¹ M. Viviani,^{24, 26} U. Zeitler,¹⁵ and F. Zhao¹¹ INFN Sezione di Roma 3, Roma, Italy ⁰Università di Roma Tre, Roma, Italy INFN Sezione di Roma 1, Roma, Italy Sapienza Università di Roma, Roma, Italy INFN Sezione di Milano-Bicocca, Milan, Italy ⁰Università di Milano-Bicocca, Milan, Italy ⁾Universidad Politécnica de Madrid, Madrid, Spain INFN Laboratori Nazionali del Gran Sasso, L'Aquila, Italy Argonne National Laboratory, Chicago, IL, USA ⁽¹⁾Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL, USA ¹⁾Princeton University, Princeton, NJ, USA ²⁾INFN Sezione di Napoli, Napoli, Italy ³⁾Nationaal instituut voor subatomaire fysica (NIKHEF), Amsterdam, The Netherlands ⁴⁾ University of Amsterdam, Amsterdam, The Netherlands ⁵⁾Radboud University, Nijmegen, The Netherlands ⁶⁾Università di L'Aquila, L'Aquila, Italy ¹⁾Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, ⁸⁾Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain ⁹⁾INFN Sezione di Torino, Torino, Italy ⁰⁾ Università di Genova e INFN Sezione di Genova, Genova, Italy ¹⁾Princeton Plasma Physics Laboratory, Princeton, NJ, USA ²⁾Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel ³⁾University of Illinois Urbana-Champaign, Urbana, IL, USA ⁴⁾INFN Sezione di Pisa, Pisa, Italy ⁵⁾Università degli Studi di Napoli Federico II, Napoli, Italy ⁶⁾ Università degli Studi di Pisa, Pisa, Italy ¹⁾Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy ⁸⁾ Uppsala University, Uppsala, Sweden

[M.G. Betti et al., 2019] JINST 17 (2022) 05, P05021

Etot = q(VTES - Vtarget) + ETES + ERFcorr

JINST 17 (2022) 05, P05021

 A new electromagnetic filter idea based on RF detection and dynamic E setting

JINST 17 (2022) 05, P05021

 A new electromagnetic filter idea based on RF detection and dynamic E setting

JINST 17 (2022) 05, P05021

 A new electromagnetic filter idea based on RF detection and dynamic E setting

JINST 17 (2022) 05, P05021

• A new electromagnetic filter idea based on RF detection and dynamic E setting

⊿∨ known to 1 ppm precision

DETECTOR CONCEPT

SIMULATION WITH CST SOFTWARE

$$V_D = \left(qE + F - \mu\nabla B - m\frac{dV}{dt}\right) \times m\frac{B}{qB^2}$$

$$\frac{dT_{\perp}}{dt} = \frac{\mu}{B^2} \boldsymbol{E} \cdot (\boldsymbol{\nabla} B \times \boldsymbol{B})$$

Prog.Part.Nucl.Phys. 106 (2019) 120-131

JINST 17 (2022) 05, P05021

New concept: **Transverse drift filter** 18.6 keV = 0.01 keV in 0.7 meters

- PTOLEMY aims at using TES detectors with an envisaged resolution of $\Delta E \simeq 0.05 eV$
- However:
 - I. TES' perform best with energies O(10 eV) need to slow the electrons down
 - 2. TES' are slow response detectors need to reduce the number of electrons coming from β -decay

24

DEMONSTRATOR MAGNET

BEING REBUILT AT LNGS IN A LARGER SIZE.

Measured B field shape as expected

PTOLEMY: ATOMIC T TARGET

• PTOLEMY has to deal with large instrumented mass. Distribute atomic tritium on a solid state substrate (e.g. graphene)

90% H loading demonstrated in the framework of the PTOLEMY R&D by Rome group (unprecedented value). [see Betti et al. - Nano Lett. 2022]

ALTERNATIVES

- Preliminary studies show that this is a feasible solution
- When passivated with hydrogen,

the nanotube potential looks like

external B-field could also prevent the formation of molecules if two atoms are in the same nanotube

Fullerene sphere with **single T** atom very promising even though prototypal idea

CALORIMETER

E_e=q(V_{TES}-V_source)+E_cal

Now: 0.11 eV @ 0.8 eV and 106 mK and 10x10 μm² TiAuTi 90nm [Ti(45nm) Au(45nm)] (τ ~137 ns)

Design Goal (PTOLEMY): $\Delta E_{FWHM} = 0.05 \text{ eV} @ 10 \text{ eV}$ translates to $\Delta E \propto E^{\alpha} \ (\alpha \leq 1/3)$

Δ*EFWHM* = 0.022 eV @ 0.8 eV

$$\Delta E_{FWHM} \approx 2.36 \sqrt{4k_B T_c^2} \frac{C_e}{\propto} \sqrt{\frac{n}{2}}$$

 $\Delta E \propto T^{3/2} \Rightarrow T_c = 36 \text{ mK} @ 10 \times 10 \text{ } \mu\text{m}^2 (t=90 \text{ nm})$

 \Rightarrow T_c= 46 mK @10x10 µm² (t=45 nm)

ROL

-OGICA

A taste of the results that PTOLEMY can achieve

Even in absence of capture events spectral analysis will allow to achieve mass measurement with the percentage uncertainty reported below:

energy resolution versus lights neutrino mass for 10 mg x yr of exposures

R&D at LNGS

RF ANTENNA R&D

RF cryogenic system

RF R&D AT LNGS

Frequency Down-conversion

• $f_{IF} = f_{RF} - f_{LO}$, ADMV1014, $G_{mixer}(f_{IF} = 1GHz) = 17.5dB$

Results

HV precision reference goal: <10 mV over 20000 V

Experimental SETUP (@LNGS)

PTOLEMY SCHEDULE

- CONCEPTUAL DESIGN REPORT, 2023
- PTOLEMY DEMONSTRATOR, 0.1 MG SOURCE (NEUTRINO MASS), 2025
- FULL SCALE EXPERIMENT (> 2030)
 GRAPHENE PACKAGING
 MODULAR DETECTOR

PTOLEMY COLLABORATORS ALL AROUND THE WORLD

FINANCIAL SUPPORT

Previous financial supports:

Princeton Univ., Simons Foundation (2016-): 3 M\$, plus 2 M\$ current grant

John Templeton Foundation 1 already given and 1 M\$ current grant dedicated to the design study of the PTOLEMY filter.

Dutch Research Council (NL) (2021-): 1.3 ME

Research Grant of "One Second after the Big Bang" The topic of the grant is "**RF antenna design and large scale readout chain implementation**." LNGS is a partner in this grant. One PhD position is awarded and one PostDoc, 60% based at LNGS with 100 kE budget, are foreseen.

Italian program of PNRR: 400 kE out of almost_2 M grant of a technological project dedicated to the 3D additive metal manufacturing development. This budget will be exploited for the construction of the demonstrator at LNGS.

R&D ongoing at LNGS presently supported by **CSNV with almost 50 kE per year for three years** (not included the researcher salary)

CONCLUSION

- PTOLEMY aims at eventually detect cosmic neutrino background on a long term time scale
- The detector prototype will be ready at LNGS by the next year
- Prototype baseline option is: T embedded on graphene; New concept EM filter in final configuration; electron energy resolution measured in several steps (MCP/SDD). Ultimately operate TES with sub-eV energy resolution.
- Possible intermediate results from Prototype on neutrino mass measurement
- Ultimate goals of demonstrator: instrumented mass ~ hundreds of μg, energy resolution 50-100 meV, T storage solution will come from optimisation of atomic T support structure. Time scale 5 years.

Thanks for listening!