16-17 novembre 2022 IJCLab Paris

IRN Neutrino meeting

November 16-17 2022

CUORE Upgrade with Particle IDentification

$0\nu2\beta$ in a nutshell

0.3

$0v2\beta$ in a nutshell

0.3

$0v2\beta$ in a nutshell

0.3

$0\nu 2\beta$ in a nutshell

CUORE in a nutshell

CUORE is an array of **TeO₂ bolometers** searching for $0\nu2\beta$ decay of the **isotope** ¹³⁰**Te** and taking data in LNGS (Italy) at ~12-15 mK

The largest bolometric experiment ever

- 988 crystals 5x5x5 cm, closely packed arranged in 19 towers of 13 floors each
- 742 kg (206 kg of ¹³⁰Te)
- Background according to expectations
- 1.49(4)×10⁻² counts/(keV·kg·y)
- Energy resolution (at 2615 keV) close to expectations: 7.78(3) keV FHWM

One of the most sensitive $0\nu 2\beta$ experiments of the current generation

- Exposure for the current limit: 1038.4 kg·y
 (> 1.8 tonne·y collected!!)
- Current limit (¹³⁰Te $T_{1/2}^{0\nu2\beta}$) : > 2.2 × 10²⁵ y m_{$\beta\beta$} < 90 - 305 meV
- 5 y projected $T_{1/2}$ sensitivity: ~9 × 10²⁵ y

 $m_{\beta\beta}$ < 50 – 130 meV

Nature 604 (2022) 53-58

CUORE is not background free

 \rightarrow \sim 50 counts/y in the ROI, dominated by surface alpha background

$\mathsf{CUORE} \rightarrow \mathsf{CUPID}$

Three important messages from CUORE

- **1. A tonne-scale bolometric detector** is technically feasable
- 2. Analysis of ~1000 individual bolometers is handable
- 3. An infrastructure to host a bolometric next-generation $0v2\beta$ experiment exists and will be available at the end of the CUORE physics program (~2024)

CUPID (CUORE Upgrade with Particle ID) is a proposed $0\nu2\beta$ bolometric experiment exploiting the CUORE infrastructure and with a background 100 times lower at the ROI

CUORE background model

- Reject α background with scintillating bolometers
- Mitigate γ background by moving to ¹⁰⁰Mo
 - $Q_{2\beta}$: 2527 keV (¹³⁰Te) \rightarrow 3034 keV (¹⁰⁰Mo)
- Increase isotope mass by enrichment (natural isotopic abundance: 9.7%)

CUORE ¹³⁰Te pure thermal detector (bolometer)

IRN Neutrino - A. Giuliani

IRN Neutrino - A. Giuliani

Technical readiness and structure

Choice of the isotope and compound

16/11/2022

Technical readiness and structure

Choice of the isotope and compound

IRN Neutrino - A. Giuliani

Technical readiness and structure

CUPID structure

CUPID experimental tests

Tests are ongoing to validate the CUPID detector structure and investigate some critical points of the background model

Several above-ground facilities and three underground facilities are in use

α events

Heat (keV)

7000

6000

- **1.** Canfranc CROSS facility (Spain) erc \leftarrow ICJLab-led
- **LNGS Hall C facility** (Italy)
- LNGS Hall A facility (Italy) (former CUORICINO, CUORE-0, CUPID-0 cryostat) 3.

Canfranc CROSS facility

12 crystal array 16 light detectors

- Comparison of light collections with different approaches
- Confirmation of previous performance for configurations with/without reflector

First validation of square (45x45 mm) light Validation of no-reflective-foil approach

LNGS Hall C facility

First test and validation of the baseline CUPID module

- Energy resolution: 5.9 keV FWHM at 3034 keV ($Q_{\beta\beta}$)
- Light detector baseline noise: 35 – 70 eV FWHM
- α rejection: > 99.9%

CUPID Baseline-Design Prototype Tower

CUPID Baseline-Design Prototype Tower

Critical operation in assembly: temperature-sensor gluing \rightarrow detector sensitivity, speed and reproducibility

The baseline tower will allow us to compare different types of glues for Li_2MoO_4 crystals – Fast epoxy is used for light detectors

9 separated glue spots

Thin homogeneous layer

All gluing operations and light-detector assembly were performed at IJCLab by a CUPID-France team

Light detector gluing operation

Four light detectors were preliminarily and successfully tested above ground at IJCLab

CUPID Baseline-Design Prototype Tower

Final tower assembly at LNGS

CUPID Baseline-Design Prototype Tower

The prototype tower was cooled down in July and October 2022

Primary goal: validate the tower structure in terms of detector temperature values and distribution

Secondary goals: Analysis of **detector performance** - Study of the **crystal radiopurity** – Dependance of detector behavior on **glue type**, **crystal origin**, **light-detector coating** method (analysis still ongoing and results very preliminary)

The primary goal is achieved - All the channels cool down without problems with a reasonably narrow temperature distribution and no dependence on the position in the tower

Estimated detector temperature range without readout current (base temperature)

11 – 15 mK

Estimated **detector temperature range with readout current** (operation point)

14 – 17 mK

 \rightarrow The thermal scheme of the tower is validated

CUPID Baseline-Design Prototype Tower

CUPID background

CUPID sensitivity

Background model and physics reach

250 kg of ¹⁰⁰Mo CUORE cryostat Bkg 1×10⁻⁴ ckky Excl. sensitivity: $T_{1/2} > 1.4 \times 10^{27}$ y

Phased approach

CUPID in the international landscape

CUPID collaboration

16/11/2022

IRN Neutrino - A. Giuliani

Summary and final considerations

Advantages of CUPID

- The infrastructure already exists (CUORE cryostat, LNGS, Italy)
- Basic technology demonstrated in CUPID-Mo (EDELWEISS cryostat, Modane, France)
- The performance of the single module and of the basic tower are under test with promising results
- Crystallization and enrichement at large scale are possible and demonstrated
- Data-driven background model indicates b~10⁻⁴ counts/(keV·kg·y)
- Fully explore the inverted ordering region

down to $m_{\beta\beta}$ = 10 meV for the most favorable nuclear model

- The collaboration is working on getting ready for CUPID
- On a longer time scale, mass scaling and potential multi-isotope approach

CUPID collaboration

BACK UP

Isotopic enrichment

- Russia is by far the main isotope provider for current experiments
 → reliable and high-quality supply chain
- Some $0\nu\beta\beta$ isotopes procured from a **European producer** (⁸²Se, ⁷⁶Ge)
- War against Ukraine \rightarrow impossible to procure isotopes from Russia for Western countries
- Intense contacts with a European producer for a Russia-alternative isotope supply (⁷⁶Ge,¹⁰⁰Mo, ¹³⁶Xe)
- **Chinese-led projects** could continue to procure $0\nu\beta\beta$ isotopes from Russia
- Experiments using or considering to use natural isotopic composition sources: Te (34% ¹³⁰Te): CUORE, SNO+, THEIA, JUNO Xe (8.9 % ¹³⁶Xe): DARWIN