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WHAT IS PARTICLE ASTROPHYSICS

1) Observational Cosmology
Big Bang Nucleosynthesis
Cosmic Microwave Background
Supernovae and cosmology
Clustering of Galaxies (BAO...)
Dark matter (Fritz Zwicky and Vera Rubin), dark energy

2) Neutrino Physics and Proton Decay
Neutrino cosmology
Neutrinos and star evolution: Solar neutrinos, Supernova 1987
Non accelerator Neutrino physics (mass, oscillations, nature:
Dirac, Majorana, sterile)
Proton decay.

3) High energy astrophysics (multimessenger approach)
» high Energy Neutrinos (Moisej Markov)
high energy Gamma rays (Alexander Chudakov)
With a Zpom high enregy cosmic rays (Pierre Auger)
on Fran¢e Gravitational waves (Albert Einstein)
coupled to astronomy from infra red to X-rays 3
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Primary cosmic ray showers:

detectors are on ground, on mountains, on balloons or in space, deep underwater

Primary Cosmic Rays




Science: Resolving the mysteries of the UHE Universe

. I ¢ Diffuse y (Fermi LAT) lceCube (ApJ 2015) ]
10 ¢ § Cosmicrays (Auger) [ lceCube (tracks only, ApJ 2016) 3
¥ Cosmic rays (TA) f  IceCube-Gen2 (10 years) :
10 gamma rays neutrinos cosmicrays 3
%0

-7 “0“ * ‘0,

10 ’.. “. ‘ E
#

_—
o|
=3}
+—®
1

9 **ifl o
'|

10_10 | | | 1 | | | M :

10" 10° 10" 102 10° 10* 10° 10° 10 8 o9 1o‘° 10" 10"
Energy [GeV]

E°x® [GeVs sr cm ]

DESY. Future facilities for Multimessenger Astronomy | Marek Kowalski | EPS-HEP 2019 Page 18



Motivations

Spectra, composition and origins of cosmic rays
(super/hypernovae, Active Galactic Nuclei, coalescence..)

Learn about acceleration mechanisms in the Universe (jets)

Search for new physics beyond the reach of accelerators

Indirect detection of dark matter particles, through their
annihilation into gamma rays or neutrinos, or in the form of
dark matter black holes detected recently through their
gravitational coalescence

Started in the 80’s with underground searches for proton
decay(103° years expectation) detectors and three
anomalies: ultra high energy cosmic ray anomaly (events
beyond the Greisen, Zatsepine, Kouznine GZK cut-off
observed by AGASA EAS), Cygnus X3 anomaly, solar
neutrino deficit (Chlorine experiment) and



Proton lifetime experiments
IMB 1981 (Sulak..), Kamiokande (1983,
Koshiba...): also good muon and neutrino
detectors




Expérience durée de vie du proton
LSM 1983 (Rousset, Barloutaud,
Julian..)




Three important results in 1985
1. Cosmic Rays above the GZK cut-off

Experimental data: The spectra measured by several
experiments have absolute normalization different by 40%.
Note that the differential flux is multiplied by E3 to emphasize
the shape of the spectrum. The results are obtained with the
same hadronic interaction model.

The AGASA and
HiRes experiment
have the highest
current statistics
around the GZK
cut-off. AGASA
shows no cut-off,
while HiRes does.
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Two important results in 1985
2. Cygnus X3

- The Soudan 1 proton decay experiment has obtained additional
evidence for underground muons associated with the x-ray pulsar
Cygnus X-3. We report the preliminary analysis of data recorded
during the October 1985 radio outburst of Cygnus X-3, which show
a significant excess of muons for a narrow range of Cygnus X-3
pulsar phases.

- Trevor Weekes: After decades of fruitless search, astronomers

have found a source (Cygnus X3) of high energy charged
particles and TeV gamma rays bombarding the earth

- Finally this turned out to be wrong (G. Chardin anticipated) ,
but one source of TeV gamma rays was discovered by Whipple
(the crab nebula supernova remnant), which is by now the
reference (brightest) source in this energy range
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3. The solar neutrinos deficit enigma

Ray Davis
Homestake mine
600t C2Cl4




Expected Solar Neutrino Spectrum (J.
Bahcall)
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Figure 1: Neutrino fluxes (with percentage uncertainties) as predicted by the Bahcall-Serenelli



37Ar production rate (Atoms/day)
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Is he signal coming from solar neutrinos?
Is the detector fully efficient?
Is the discrepancy due to solar modeling (Turck-Chieze vs Bahcall)
or to new neutrino properties.
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Fig. 2 Final results of Davis
experiment (Cleveland et al.
1998). The average rate of
about 2.5 SNU is much lower
than the calculated rate of
about 8.6.



GALLEX (Italy, Germany, France..)
in Gran Sasso 100t GaCls

Reaction

1Ga(v,,e)’'Ge (Ey, =233 keV)

EC 1=16.5d
1Ga

ey

pp+pep 73 SNU (55 %)

Source of the signal

’Be  35SNU (27 %)

Expected Signal
(SSM)

CNO 8SNU ( 8 %)
8B 13 SNU (10 %)

Tot 129 SNU *9_, 1

1.2 v int. per day, but due to decay
during exposure + ineff., 9 7'Ge decay
detected per extraction
(28 days exposure)




[ Extraction ]

GeCl, volatile in acidic soluion
dans 100 t of GaCl; in sol. Flux d’Azote

See f.i. PL B490(2000)16
Operation PL B314(1993)445
Extract Add 1 mg
GeCl, of carrier GeCl,
12 - 10 h
In tank GeH, + Xe

Wait

Counter in
shielding

21-28 d for SR
1d for blanks

in counter V =1cc

Stop counting

>

6 months Remove counter
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>1Cr Source

Strength 63.4 PBq 69.1 PBq
500 keV 3/2-
R (meas/expt) 1.01 0.84
175 keV 5/2- £11.5% +11.5%
g.s. '1Ge /2 0.93+0.08 [0.91 + 0.08]
Energy (keV) SICr Be

862 - 90%

751 80.6% -

746 9.5% -

431 8.8% -

426 1.1% -

384 - 10%
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Abstract. Possible solar neutrino oscillations are re-
viewed in the two-ncutrino case taking into account
the effect of coherent forward scattering when neu-
trinos travel through the sun and earth. As recently
pointed out by Mikheyev and Smirnov this effect can
induce a large suppression of the solar v, flux for values
of Am? around 10™* — 10~ *¢V? even for small values
of the mixing angle. It also may cause substantial
modifications of the solar neutrino spectrum shape. All
this may be used for determining Am?® and sin® 20 ina
large domain from the experimental results of the
chlorine, gallium, indium and heavy water detectors.

1. Introduction

As was first suggested by Pontecorvo [ 1], if neutrinos
arc massive and if there is nonconservation of the
lepton family number, the mass eigenstates v, and v, (of
masses m, and m,) may differ from v, and v, leading to

operative only for v,.For neutrinos the phase mismatch
@ Obeys [5]:

d@n/dt = k(x) = /2:G-N(x)

where x = ¢t and where N(x) is the electron density in
cm ™ ? and G is the Fermi coupling constant. The net
effect of this new phase is that the propagation
eigenstates in matter are no longer the mass cigenstates
v, and v,, therefore oscillation parameters in matter
differ from those in vacuum. This formalism was
extended to three neutrino oscillations by Barger et al.
[6]. More recently Mikheyev and Smirnov [ 7] showed
that the difference might introduce dramatic effects for
solar ncutrinos, which may lead to a very strong
suppression of the v, flux measured on earth, even if the
vacuum mixing angle is small.

In this paper we develop the formalism of two-
neutrino oscillations in matter in a way exhibiting the
possible approximations and their limits, We then
apply it to the solar neutrino case and demonstrate the
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Are the neutrinos really coming from the sun ?

_ Masatoshi Koshiba
Water Cerenkov neutrino detector:

Kamiokande
vV+e —D

high energy (compared to rest mass)

- produces cerenkov radiation when
traveling in water (can get direction
of neutrinos)

Vy Vy

neutral
VA current (NC)

Ve W- Ve charged
current (CC)
e e




SN 1987a
Neutrino detection
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Fig. 5 Each vertical line represents the relative enerqy of a muon (dashed lines) or of an electron (solid lines). Events ul - u4 are
muon events preceeding the electron bursts at time 0. The background events with NHIT<20 are largely due to decay of **Bi,
a decay product of **Rn. From Hirata et al. 1988.
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Fig. 4 Scatter plot of the detected electron
energy and the cosine of the angle between the
measured electron direction and the direction
of the Large Magellanic Cloud. The number on
each entry is the time-sequential event number.
The direction of the positron from an anti-neu-
trino reaction has very small correlation with
the direction of the neutrino. From Hirata et al.

1987.



EVENTS/BIN/450 DAYS

EVENTS/BIN/450 DAYS

@
O

}.

o
Q

»
O

Y
O

(a) Ee = 9.3 MeV

O

0)
O

L ESES TSI TR e R e |

(b) Ee = 10.1 MeV

COS(BOsun)
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detection

Fig. 3 The angular distribution of electron
neutrinos measured by the Kamiokande
collaboration. Data are shown for two dif-
ferent cuts on the electron energy. The his-
togram shows the calculated distribution
from a solar model. Notice the deficit, con-
firming Davis result. The direction towards
the sun corresponds to cos(Bsun) = 1
(Hirata et al. 1989).
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Figure 2: Angular distribution of events
with respect to the Sun, Kamiokande [29].



Astronomy Picture of the Day June 5, 1998

Neutrino image of the sun by Kamiokande — first step in neutrino astronomy



High energy neutrino detectors: neutrinos

come from below and interact in the rock or in water/ice

p
- . - ® Baikal
S £ N
Jjj Aubert - |ANtares &

lceCube |-t

ONC - Weow 0 1002000

29



Baikal, Mediterranean Sea, South Pole
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lceCube Neutrino Observatory

T € |ceTop air shower detector

\ = = 81 pairs of water Cherenkov tanks

lceCube
86 strings including 8 Deep Core strings

60 PMT per string

DeepCore
& 8 closely spaced strings

= ~220 neutrinos/day

* Threshold
- lceCube ~ 100 GeV

- DeepCore ~10 GeV

1450m




FO”OW'Up AnalyS|S° H ESE (High Energy Starting Event)

First evidence for an extra-terrestrial h.e. neutrino flux
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Bkg, Atmospheric Neutrinos (#/K)
Background Uncertainties

Atmospheric Neutrinos (90% CL Charm Limit)

Bkg.+Signal Best-Fit Astraphysical (best-fit slope £ **) |

Bkg,+Signal Best-Fit Astrophysical (fixed slope £77)
Data

Deposited EM-Equivalent Energy in Detector (TeV)

10*

2 yrs data, 28 evts  4.1c
Science 342 (2013)
3yrsdata,37evts 5.9c

| Phys.Rev.Lett. 113:101101 (2014)

4 yrs data, 54 evts ~7c

Threshold ~ 30 TeV
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FO”OW'Up AnalyS|S H ESE (High Energy Starting Event)

First evidence for an extra-terrestrial h.e. neutrino flux (confirmed recently by Baikal)
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ICECUBE AM
'''''''''''''''''''' indication for point source ALABAMZ

A high energy neutrino in ) e
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expectations. An excess ot /9 (+22,-20) neutrinos
associated with NGC 1068 was found, with the
mentioned significance of 4.2c (corrected for all
possible trials).
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The sky region around the most significant spot in the
Northern Hemisphere and NGC 1068. The plot shows a fine
scan of the region around the hottest spot. The spot

itself is marked by a yellow cross, the red circle shows the
position and size of NGC 1068. In addition, the solid and
dashed contours show the 68% and 95% confidence regions
of the hot spot localization.

[ Signal 1 Total
1 Background ¢ Data
B

80 —+

60 A

o 4 ;

N —L

)2 [deg?]

Events

Distribution of the squared angular distance between NGC
1068 and the reconstructed event direction. From Monte
Carlo one estimates the background (orange) and the signal
(blue) assuming the best-fit spectrum at the position of NGC
1068. The superposition of both components is shown in
gray and provides an excellent match to the data (black).
Note that this representation of the result neglects all the
information on the energy and angular uncertainty of the
events that is used in the unbinned maximum likelihood
approach.

This result is interpreted as direct evidence of TeV
neutrino emission from NGC 1068. The inferred flux
exceeds the potential TeV gamma-ray flux by at least
one order of magnitude, as shown in the next figure,
i.e. the source is obscured in gamma rays.

Second event: Evidence for neutrino emission
from the nearby active galaxy NGC 1068 at 4.2c
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KM3NeT

KM3NeT consists of “blocks” of 115 strings with 18 Digital Optical Modules. Two blocks for high energy (ARCA) and one
for low energy (ORCA) under construction. Superb angular resolution and complementary hemisphere to IceCube.

SRESLELLN G 2

»
p 580 gayy

e —

KM3NeT 2.0 Letter of Intent, arXiv:1601.07459
DESY. Future facilities for Multimessenger Astronomy | Marek Kowalski | EPS-HEP 2019 Page 15



Phase 2.0: ORCA and ARCA

(2022 well advanced)

G France

ORCA: determination of the Neutrino Mass Hierarchy (NMH)

ARCA: IceCube physics, but with better angular resolution and
from the Northern hemisphere 38



Conclusions HE neutrinos

Cosmic high-energy neutrinos discovered !

Opened new window, but landscape not yet charted:
two point sources identified(3 and 4.2 sigmas) up to now

Remaining uncertainties on spectrum and flavor composition
First point sources seen. Many Point sources in reach!

Need larger detectors, also with different systematics and at the
Northern hemisphere.

Next logical step: ARCA + GVD Baikalphase1
Next logical step on NMH: ORCA (then PINGU)

~2028: A Global Neutrino Observatory
(KM3NeT-GVD-lceCube-Gen2,) full sky with > 5 km?

Indirect search for dark matter (heavy particles trapped
in the sun or in the center of the earth)
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Alexander Chudakov

- .
-

1965

First search for gamma-ray showers in the atmosphere




Trevor Weekes

»
.

Imaging Atmospheric Cerenkov Telescope: Crab Nebula discoverer




ASGAT 1988 , Themistocle 1988 CAT 1996, CELESTE 1997 - 2004: La France, pionniére en
astro gamma: P. Goret, G. Fontaine, B. Desgranges, E. Paré, P. Fleury, M. Urban, M. Rivoal, C.
Guesquiere




Themistocle and ASGAT: sampling techniques: many parabola
with photomultipliers at the focus

CAT: imaging technigue—> one large mirror with many
photomultipliers at the focal plane to image the shower
CELESTE uses the full (40 heliostats) solar plant to focus the light

at the top of the tower—> low threshold
3" generation will use many large CAT imager type mirrors plus

focal plane imagers

Thémis

(Pyrénées)

40 heliostats since 1999
Trigger threshold: 30 GeV

Analysis threshold: 50 GeV
(at transit)

13 heliostats being added.

samma

L'Astronomie G

1 1 1 1 1 L L 1
_unl —a ] 0 ] W

i 5 trigger groups
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3rd generation Imaging Air Cherenkov telescopes
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Reference map (20 MeV to 300 GeV) FERMI SATELLITE
(strong French contribution),
LAT instrument CMS/LHC inspired, 6000 sources > 50 MeV




The Sky at TeV-Energies (Fermi satellite
covering up to 300 GeV)

e,

» EHESS J1713-381 HESS J1702-42b HESS J1634-472 HESS 41'616-508 MSH 15-5 ;
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RX J1713.7-3946

1989: 1 Source
1996: 3 Sources
2005: 80 Sources
2015: 150 Sources

17h15m 17h10m
1 - 1 46




It‘s going to be like classical astronomy !

Periodicities/Variability: from ms to years
Energy-coverage: over several decades

Source position: on the arc-second level

Morphology : few arc-min level
(even energy-dependent!)

N

RX J1713.7-3946

g - ' | 1989: 1 Source
‘ & B 1996: 3 Sources
] 2005: 80 Sources

{ ’ 2015: 150 Sources




It‘s going to be like classical astronomy !

PLUS:

* Physics beyond the Standard Model
— Indirect Dark Matter Search
— Test of Lorenz Invariance

* Cosmology
— Measurement of Extragalactic Background Light
— Indirect search for dark matter
— VHE Standard Candles = dark energy ?




What'’s next?

Mpc Gpc

adapted by Hinton from
Horan & Weekes 2003

Blazars
Radio Gal.

Sensitivity
CTA =

Colliding Starbursts Clusters GRBs +Dark Matter
Winds

» Current instruments have passed the critical sensitivity threshold
and reveal a rich panorama, but this is clearly only the tip of the

icebera t
‘ cherenkov telescope array
49




Summary on Gamma Rays

* CTA will open a new era in
gamma-ray astronomy

It will be flanked by wide-angle arrays like
HAWC (TeV range), SWGO? and LHAASO,

TAIGA (reaching into PeV range)

* Follow-up of Fermi satellite is still open
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Detection of cosmic air showers




James Cronin
Alan Watson
MuUrat Boratav#
(avec Antoine
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Plerre Auger Observatory
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Spectrum of Cosmic Rays

Equivalent c.m. energy\'s, [GeV]
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Scaled flux E*®J(E) [m?s”sr!eV']
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Scaled flux E*®J(E) [m?s”sr!eV']
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Cosmic Rays and LHC
pp Inel. cross section at sqri(s)=>57 Tev

-@- Auger 2012 (Glauber)
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Cosmic Rays and LHC

Cooperation of particle- and CR-physicists has been
intensified over the last years.

Extremely useful for understanding CR nature

Accelerator data helped improving shower models.
Tools of CR community will also help better understanding HE

particle interactions: models sometimes better than
HEP models

Need common approach to understand muon excess in HE CR
showers

NA61/SH|N E (SPS Heavy lon and Neutrino Experiment)Z
important input data for cosmic ray and neutrino experiments.
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Cut-off at highest energies confirmed, but ...

190 000 events E[eV]
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Need a better mass
determination to check how
the cut-off depends on
particle mass

<

Need more statistics and first { \
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Point Sources: Tantalizing hot spot

| at TA
TA:Ap] 790:L21 (2014) ‘
60, -

Dec. (deg)

ERSERE 2SO
D. Fargion; arXiv:1412.1573
62




What after results with upgraded

arrays?
* Ultrahigh-energy cosmic ray physics is at a

turning point

e Ultrahigh-energy cut-off has been clearly confirmed, but nature
unclear (composition near the cut-off is key!)

* No point sources, but hot spot TA + “warm” spot Auger
* QOrigin of the muon excess at high energies not understood

 Detection and study of point sources was one of the two primary
goals of Auger/TA. Would also be the primary motivation for any
future EeV CR experiment — ground based arrays of the 30 000 —
90 000 km? class or the space based JEM-EUSO.

* Key to move ahead in both directions: more precise mass
assignment of individual events and the separation of a proton
event sample which is minimally polluted by heavier nuclei.
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Search for GW with a bar cylinder




Rapport du comité présidé par Patrick Fleury en 1990
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The current GW network of interferometers:

GEO, Hannover, 600 m

B ke -
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. TAMA, Tokyo 300 m
KAGRA 3km
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The GW network in 4-5 years

GEO, Hannover, 600 m

LIGO India
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The first Multi-Messenger paper!

Toar Asrwomovrcas Joumws. Lirrmg, SARLE2 (Ypp, 3007 Ocacber 3 bape, &
1) T Aneban Al Sacay AD 181 10w
OPEN ACCLSS

Multi-messenger Observations of a Binary Neutron Star Merger

LXGO Scemitic Colaborstin and Virgo Collaboeston, Fermi GBM, INTEGRAL, loeCube Collaborstin, AgwoSar Cadmain Zne
Teluride Tnager Team, IPN Colkbocagon, The Insight Hxme Colbiborgion. ANTARES Collaborason, The Swift Collsboratin, AGILE
Team The IM2H Team The Dirk Enargy Camcra GW-EM Collghoration and the DES Collsboesion, The DETE0 Collaborgion
GRAWITA: GRAvitional Wave Inef TeAm, The Fermi Lage Aa Tebescope Collabontivn, ATCA: Austrdia Telescope Compact
Ay, ASKAP. Austiralian SKA Pthfinder, Lis Cumbres Observisory Group, OeGeay, DWF (Deeper. Widkr, Fasker Program), AST
d CAASTRO Calboreces, The VINROUGE Colaboranon, MASTER Collaboragon, JGEM. GROWTH, JAGWAR, Calech
NRAD, TTUNRAD, ind NuSTAR Collahorators, Pin-STARRS, The MANT Team, TZAC Consortiom, KU Collsboration, Nordic
Opical Teksoope, cPESSTO, GROND, Texas Tech Universaty, SALT Group, TOROS: Tramseert Robote Cbservisery of the Souh
Collsharabion, The BOOTES Collbombon, MWA: Murchion Widelield Amay, The CALET Colliborgion, [KHOW Follow-up
Calibveaon, HESS. Colborstion, LOFAR Collsboation, LWA: Long Wavelensth Amay, HAWC Collabosation, The Fese Anger
Colkboation, ALMA Collshorution, Bum VIBI Team, P of the Sky Collabongion, The Chandr Team i McGill Universty, DIFN
Diesert Fachall Nemwork. ATLAS. High Time Rosobtion Universe Suvey, RIMAS ind RATIR, and SKA South Afics MeaKAT
(See te end matey foe the Rl 1st of antwes,)

50 teams
>3600 authors

~20 orders of magnitude
in wavelength

Including VHE and
neutrino follow-up
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Black holes as dark matter?

* Most events seen by LIGO/VIRGO are coalescence of
few tens of solar masses black holes (excellent
laboratory to test General Relativity)! Could these black
holes be the dark matter in the universe?

* Very recently the EROS collaboration, combining its
data with MACHO, has shown that the dark matter in
the halo of our galaxy cannot be made of compact
objects of masses between 10° and 103 solar masses

* This is based on observations of millions of stars in the
LMC, looking (during 10 years) at the occurrence of
alignments between us, a dark compact object in the
halo of our galaxy and a star in the LMC.

» Theése 2021: Tristan Blaineau, directeur de thése: Marc Moniez
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Gravitational Waves: 3rd generation interferometers

Einstein Telescope Cosmic Explorer

=

(EU lead) (US lead)
+ 3x 10 kmarms + 2 x40 km arms
* underground songround

* cryo technology

[Eev  Fuypre jacilitios for Mytime ccanger Astronomy | Marek Kowalski | EPS-HEP 2018

=

Scaling of project size: ~10
(e.g. from current 4 to ~40 km
arms)

L signal
recycli 73
<
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The Dawn of Multimessenger Astronomy

PBanannd ‘\1'{' hilirhhban
recent highlignts

Highlight #1: First merger of two Neutron-stars
How:  Gravitational waves + optical + X-rays

Where: Nature 551 (2017), Science 358 (2017),
Astrophys.J. 848 (2017), MNRAS 481 (2018)

0
2
~
)
4
i
3
0

DESY, Future facilities for Multimessenger Astronomy | Marek Kowalski | EPS-HEP 2019

Highlight #2: First source of high energy neutrinos

How:  Neutrinos + gamma-rays
Where: Science 361 (2018), Astrophys.J.Lett. 863 (2018)




High and ultra high energy multi-
messenger astronomy

Gamma ray astronomy paved the way, gives the reference map of
the high energy sky (Thousands of sources): CTA next very large
infrastructure

Strong evidence for extraterrestrial TeV to PeV neutrinos. Probably
pointing to a new class of blazars (mergers?).

Cut-off of the cosmic ray high energy spectrum seen: composition

(p or Fe) and muon production near the cut-off debated. Origin
unknown.

Gravitational waves is entering the game and open new questions:
origin of 30 solar masses black holes, gamma ray bursts,
hypernovae and neutron stars collapses ...

Multi messenger approach crucial, including gravitational waves
and conventional astronomy (open data policy, virtual observatories
including these new messengers will help)

This is a new astronomy: the astronomy of the most violent
phenomena in the Universe today!!
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Features of Particle astrophysics

Collaborative

Innovative (creating new instruments)
Stimulating

“coopetition”

Search for Unity (explanations, class of objects,
laws) within Diversity (objects in the sky):
observational cosmology is a success in that
direction

Guided by curiosity: serendipity plays a role
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A fascinating field

Bold

Inclusive and participative (developing
countries, gender balance,young people, local
community)

Interdisciplinary

Incredible locations and instruments
Rich in discoveries

Sometimes disruptive
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International Year of Basic Sciences for
Sustainable Development in 2022/2023

* Long term curiosity driven sciences, source of
knowledge, of disruptive discoveies and of
applications for future generations (astroparticle
physics is an example). Re-enchant our world.

* |UPAP (International Union of Pure and Applied
Physics) has taken the lead of this International Year of
Basic Sciences for Sustainable Development)

* |t was recommended by the UNESCO Executive Board
and soon by the UNESCO General Conference. The
proclamation by thr UN General Assembly happened
on December 2nd 2021! The Year will extend over 2022
and 2023
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