Résultats marquants des trois premières périodes d'observation de LIGO-Virgo

Eric Chassande-Mottin

AstroParticule et Cosmologie (APC) CNRS Université Paris Cité

L'espace-temps est dynamique et déformable La gravité provient de la courbure de l'espace-temps

24 nov 2022

charges accélérées \rightarrow ondes électromagnétiques

masses accélérées \rightarrow ondes gravitationnelles

- Pas émission pour les objets sphériques
- Requiert un certain degré de non-axisymétrie

Grandes masses, vitesses relativistes \rightarrow Objets astrophysiques compacts

24 nov 2022

Cf Laurent Pinard

Principe de détection : Interféromètre de Michelson

$$h = \frac{\delta\ell}{L} \sim 10^{-21}$$

 $\delta \ell \sim 10^{-18} m$ L = O(1) km

Radius of atomic nuclei
$$10^{-15}m$$
 (x 1000)

24 nov 2022

Transient Short duration

Permanent Long duration

Core science

Compact stars (neutron stars or black holes)

> Fundamental physics (test of GR)

Cosmology

Sensitivities during O3 2019-2020

Distance range to binary neutron stars (averaged over sky position and inclination)

L1: 135 Mpc H1: 115 Mpc V1: 50 Mpc

Distance reach for **binary black hole** mergers extends **much further away**.

```
1 parsec = 3.26 \text{ ly}
= 31 \times 10^{12} \text{ km}
```

24 nov 2022

How far is this?

Local group

To Virgo cluster

Laniakea Supercluster

30 ans d'OG à Lyon

24 nov 2022

~ (range)³

Aug 14 2017

Signature caractéristique de la fusion de deux trous noirs

GW170814

Are polarization states pure tensor?

Aug 14 2017

Signature caractéristique de la fusion de deux trous noirs

GW170814

15 paramètres

(masses, spins, et géométrie : position + orientation)

$$m_{1} = 30.5^{-3.0}_{+5.7} M_{\odot}$$

$$m_{2} = 25.3^{-4.2}_{+2.8} M_{\odot}$$

$$m_{2} = 540^{-210}_{+130} \text{ Mpc} \quad \text{avec l'amplitude}$$
soit 1.8 milliard d'années lumière

Aug 17, 2017

GW170817

$$m_1 = 1.46^{+0.12}_{-0.10} M_{\odot}$$

$$m_2 = 1.27^{+0.09}_{-0.09} M_{\odot}$$

$$D_L = 40^{+7}_{-15} \,\mathrm{Mpc}$$

soit 130 millions d'années lumière

GW170817 : Astrophysique multimessager !

9d

X-ray

16.4d

Radio

10.86h

Gamma-rays

T0+1.7 s

Association with gamma-ray bursts Jet of relativistic plasma?

Speed of gravity: $|c/c_g - 1| < 5 \times 10^{-16}$ alt. gravity scalar-tensor theories

24 nov 2022

Near infrared, visible and UV

HST/WFC3-IR F110W t_+4.79d

TO+~1d "Kilonova " – Thermal optical transient fed by the radioactive decay of instable nuclei formed by rapid neutron capture

V. Ashley Villar et al, arXiv:1710.11576

24 nov 2022

90 confident detections

A large population of "heavy" **binary black holes,** so far unobserved

Time [seconds] from 2019-04-12 05:30:44 UTC (1239082262.0)

https://arxiv.org/abs/2010.14527

A large population of "heavy" **binary black holes,** so far unobserved

 $\begin{array}{l} m_1 = 71 - 106 \ M_{\odot} \\ m_2 = 49 - 84 \ M_{\odot} \end{array}$

Incompatible with the current understanding of black hole formation from massive stars

Expect high mass gap ~(65-135 M_{\odot}) from pulsational pair instability

https://arxiv.org/abs/2010.14527

Other types of binary systems

- Binary neutron stars
- Possible mixed black hole and neutron star binaries

Black holes from stellar core collapses are expected to be > 3 $M_{\mbox{sun}}$

Other types of binary systems

- Binary neutron stars
- Possible mixed black hole and neutron star binaries

Black holes from stellar core collapses are expected to be > 3 $M_{\mbox{sun}}$

A large population of "heavy" **binary black holes,** so far unobserved

Raises many questions

How do they form? In what environment?

Credit: LVK / IGFAE / T Dent arXiv:2108.01045 arXiv:2111.03606

GWTC-2

A large population of "heavy" **binary black holes,** so far unobserved

Formation scenarios:

Formation in isolated binaries

Dynamical formation in dense environments (globular clusters or galactic nuclei)

Others ?

A mix of populations ?

http://arxiv.org/abs/2111.03606

Clusters and deficiencies in the mass distribution

BBH merger rate at z = 0.2

17–45 Gpc⁻³ yr⁻¹

Increase with redshift z

Gravitational-wave cosmology

Bright sirens (GW170817)

Lumin. distance from GW data

Redshift from electromagnetic counterpart (or galaxy catalog)

 \rightarrow Hubble constant

Dark sirens (BBH)

 $m^{(d)} = (1 + z)m^{(s)}$

Joint fit of cosmological parameters and mass population models

arXiv:2111.03604

What did we <u>not</u> detect?

Search for sub-solar mass binaries (0.2–1 M_{sun})

3 different pipelines \rightarrow No detection

Constraints on the fraction of dark matter in primordial black holes

What's next? "Avant le déluge"

 \rightarrow 2028 Prochaines campagnes

- O4 (2023) : 100aine de sources
- O5 (2026) : x 5 plus
- ~2030 Stratégie pour l'après O5
- ~2035 **3**^{ème} gén : Einstein tel & Cosmic Explorer

Cf David Shoemaker

30 ans d'OG à Lyon

https://observing.docs.ligo.org/plan/ arXiv:1304.0670

Conclusions

24 nov 2022

• Une nouvelle astronomie !

- Une population de trous noirs jusqu'ici inconnue
- Multimessager : fusion de deux étoiles à neutrons et contreparties

• Nombreuses implications en cascade

- Physique nucléaire : équation d'état de la matière dense
- Cosmologie : mesure de la constante de Hubble
- Nucléosynthèse cosmique : abondances des éléments lourds
- Gravité quantique ? Dimensions supplémentaires?

• Un futur prometteur

- Une décennie d'observation à venir
- Un riche programme scientifique
- Les équipes lyonnaises très bien positionnées pour les 30 prochaines années !

Tests of General Relativity from GW

Range of effects tested

- Waveform consistency (residual)
- Internal consistency of the waveform parts
- GW generation (post-Newton)
- GW propagation (dispersion)
- Polarization
- Remnant properties (ringdown, echoes)
- No statistically significant deviation observed