

Gamma angle measurement in $B^- \rightarrow D^0 (\rightarrow K_s \pi^+ \pi^- \pi^0) K^-$ (Generalized GGSZ)

Jessy DANIEL, On behalf of the LHCb collaboration Université Clermont-Auvergne, LPC

GDR-Inf Annual Workshop Lyon - 02-04 November 2022

The CKM Matrix, the Unitary Triangle and y angle

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- The CKM Matrix elements can been determined from experiment -> Parameterization with 4 independent parameters
- Goal : Sensitivity to BSM effects if Unitarity triangle different in direct and indirect measurements
- The current state of y measurements (<u>CONF-2022-003-001</u>):

Direct : $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ -> Tree Level Indirect : $\gamma = (65.66^{+0.9}_{-2.65})^{\circ}$ -> Loops / Pinguin diagrams

 $\sum_{i=1}^{N} V_{ji} V_{ki}^* = \sum_{i=1}^{N} V_{ij} V_{ik}^* = 0$

The CKM Matrix, the Unitary Triangle and y angle

Couplings	NP loop	Scales (in TeV) probed by	
	order	B _d mixing	B_s mixing
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$ C_{ij} = 1$	tree level	2×10^3	5×10^2
(no hierarchy)	one loop	2×10^{2}	40

TABLE II. The scale of the operator in Eq. (2) probed by B_d and B_s mixings at Stage II (if the NP contributions to them are unrelated). The impact of CKM-like hierarchy of couplings and/or loop suppression is indicated.

-> Test of global validity of the CKM formalism in tree level diagrams

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- The CKM Matrix elements can been determined from experiment -> Parameterization with 4 independent parameters
- Goal : Sensitivity to BSM effects if Unitarity triangle different in direct and indirect measurements
- The current state of y measurements (<u>CONF-2022-003-001</u>):

Direct : $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ -> Tree Level Indirect : $\gamma = (65.66^{+0.9}_{-2.65})^{\circ}$ -> Loops / Pinguin diagrams

 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test SM up to dozens of TeV energy scales
 -> Only possible in association of multiple analysis

Measuring **y**

Measuring **v** : GGSZ Method

• The 3-body decay mode used in GGSZ currently is one of the most precise γ measurement. The 4-body decay with π° still not measured in LHCb $D^{\pm} \rightarrow D^{0} (-1) U^{0} + -1 h^{\pm}$

Measuring **v** : GGSZ Method

• The 3-body decay mode used in GGSZ currently is one of the most precise γ measurement. The 4-body decay with π° still not measured in LHCb $B^{\pm} \rightarrow D^{0} (\rightarrow K_{\circ}^{0} \pi^{+} \pi^{-}) h^{\pm}$

Measuring γ with decay $B^- \rightarrow D^0 (\rightarrow K_s \pi^+ \pi^- \pi^0) K^-$

• γ measurement depends on $\Delta \delta_D$, the strong phase difference between $D^0 \to f(\delta_D)$ and $\overline{D^0} \to f(\delta_{\overline{D}})$

Varies on Phase-Space of the 4-body decay $D^0 \to K_s^0 \pi^+ \pi^- \pi^0$

I will use a similar method to the one in <u>JHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis)

-> Binned map of strong phase from JHEP 10 (2018) 178 (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson - CLEO-c)

Measuring y with decay $B^- \to D^0 (\to K_s \pi^+ \pi^- \pi^0) K^-$

 γ measurement depends on $\Delta \delta_{D}$, the strong phase difference between $D^0 \to f(\delta_D)$ and $\overline{D^0} \to f(\delta_{\overline{D}})$

Varies on Phase-Space of the 4-body decay $D^0 \rightarrow K_s^0 \pi^+ \pi^- \pi^0$

$$\Gamma_i^- = h\left(K_i + r_B^2 \overline{K}_i + 2\sqrt{K_i \overline{K}_i}(c_i x_- + s_i y_-)\right)$$

$$\Gamma_i^+ = h\left(\overline{K}_i + r_B^2 K_i + 2\sqrt{K_i \overline{K}_i}(c_i x_+ - s_i y_+)\right)$$

I will use a similar method to the one in <u>JHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis)

-> Binned map of strong phase from JHEP 10 (2018) 178 (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson - CLEO-c)

- $y_{\pm}=r_B sin(\delta_B\pm\gamma)$ K_i and $ar{K_i}$ are fractions of $D^0/ar{D}^0$ in bin i

•
$$x_{\pm} = r_B cos(\delta_B \pm \gamma)$$

• $c_i = \overline{C}^i = \overline{cos(\Delta \delta_D)}^i$
• $s_i = \overline{S}^i = \overline{sin(\Delta \delta_D)}^i$
• $r_B = \frac{A_{B^- \to \overline{D^0}K^-}}{A_{B^- \to D^0K^-}}$
• $r_B = \frac{A_{B^- \to \overline{D^0}K^-}}{A_{B^- \to D^0K^-}}$

Measuring y with decay $B^- \to D^0 (\to K_s \pi^+ \pi^- \pi^0) K^-$

8

JHEP 01 (2019) 82

In $B \rightarrow DK$: 815±51 events with ~60% purity at 2σ

Measuring γ with decay $B^- \rightarrow D^0 (\rightarrow K_s \pi^+ \pi^- \pi^0) K^-$

JHEP 01 (2019) 82

• In $B \rightarrow DK$: 815±51 events with ~60% purity at 2σ

•
$$\gamma = (5.7^{+10.2}_{-8.8} \pm 3.5 \pm 5.7)^{\circ}$$

• 95% Confidence level : $\gamma \in (-29.7, 109.5)^\circ$

10

- Goal of the Selection : Keep the maximum efficiency on Signal while putting aside most of the Combinatorial and Physical background
- Use of the reference mode $B^{\pm} \rightarrow D^0 \pi^{\pm}$ that is topologically identical, statistically more interesting and less sensible to CP asymmetry

 $BR(B^{\pm} \to D^0 \pi^{\pm}) \approx 12.7 \times BR(B^{\pm} \to D^0 K^{\pm})$

- Selection based on 2 Multivariate-Analysis and unidimensional cuts on particle masses :
 - First MVA : MLP method on geometrical and topological variables from D decay
 - Second MVA : MLP method on geometrical and topological variables from B decay
 - \circ ~ Unidimensional cuts on K°s, π° and D° masses

- Selection based on 2 Multivariate-Analysis and unidimensional cuts on particle masses using the reference mode $B^{\pm} \rightarrow D^0 \pi^{\pm}$:
 - First MVA on D decay geometrical and topological parameters using a MLP method

• $m(K_s^0)$ -> Selection by optimisation of $\frac{S}{\sqrt{S+B}}$ in left and right sides of the peak on DATA

• $m(\pi^0)$ -> Selection by optimisation of $S/\sqrt{S+B}$ in left and right sides of the peak on DATA Combinatorial Background modelled with a technique where signal PDF is driven by MC

• $m(D^0)$ -> Selection by optimisation of $\frac{S}{\sqrt{S+B}}$ in left and right sides of the peak on DATA

- Selection based on 2 Multivariate-Analysis and unidimensional cuts on particle masses using the reference mode $B^{\pm} \rightarrow D^0 \pi^{\pm}$:
 - Second MVA on B decay geometrical and topological parameters using a MLP method

- Goal of the Selection : Keep the maximum efficiency on Signal while putting aside most of the Combinatorial and Physical background
- Use of the reference mode $B^{\pm} \rightarrow D^0 \pi^{\pm}$ that is topologically identical, statistically more interesting and less sensible to CP asymmetry

 $BR(B^{\pm} \to D^0 \pi^{\pm}) \approx 12.7 \times BR(B^{\pm} \to D^0 K^{\pm})$

- Selection based on 2 Multivariate-Analysis and unidimensional cuts on particle masses :
 - First MVA : MLP method on geometrical and topological variables from D decay
 - Second MVA : MLP method on geometrical and topological variables from B decay
 - Unidimensional cuts on K^os, π^{o} and D^o masses
- To limit misidentification of the bachelor track, we discriminate using a PID Likelihood Difference
 - \circ ~71.5% signal efficiency / ~1.5% misidentification efficiency for $B \to D^0 K^{\pm}$
- Multiple candidates are filtered, choosing the best candidate thanks to a MVA

- To limit misidentification of the bachelor track, we discriminate using a PID Likelihood Difference \circ ~71.5% signal efficiency / ~2.6% misidentification efficiency for $B \rightarrow D^0 K^{\pm}$
- Multiple candidates are filtered, choosing the best candidate thanks to a MVA

B± mass fit

Conclusion and perspectives

$$B^- \to D^0 (\to K_s \pi^+ \pi^- \pi^0) K^-$$

- Twice the Belle statistics with a similar purity -> We expect a statistical error of ~6-7°
- This Mode will also be used to participate to an Amplitude Analysis of D° decay
 - Common work with Tommaso Pajero who works on decay $B^{\pm} \to D^{*\pm} (\to D^0 \pi) \mu \nu$
 - \circ Creation of a continuous map of $\Delta \delta_D$
 - \circ ~ One can then redo the study independently from Cleo-c bins
 - Measure of $D^0 \to K^{*\pm} \rho^{\mp}$ branching ratio
 - Not measured since Mark III 30 years ago

Conclusion and perspectives

$$B^- \to D^0 (\to K_s \pi^+ \pi^- \pi^0) K^-$$

- Twice the Belle statistics with a similar purity -> We expect a statistical error of ~6-7°
- This Mode will also be used to participate to an Amplitude Analysis of D° decay
 - Common work with Tommaso Pajero who works on decay $B^{\pm} \to D^{*\pm} (\to D^0 \pi) \mu \nu$
 - \circ Creation of a continuous map of $\Delta \delta_D$
 - \circ ~ One can then redo the study independently from Cleo-c bins
 - Measure of $D^0 \to K^{*\pm} \rho^{\mp}$ branching ratio
 - Not measured since Mark III 30 years ago
- We expect a luminosity x5 during Run 3 that is just starting
 - With a L0 trigger from 1MHz on Runs 1&2 to 40MHz for Run 3
 - A new Vertex locator and tracker (SciFi) -> Very useful as the studied decay gets 5 charged tracks Note : I notably work on Scifi commissioning (Electronics Soft Control, Geometry description in software, Pacific Board Time-alignment)
 - $\circ \quad \mbox{Updates of most of the other sub-detectors}$
- About γ measurement -> expect combination of measurements to give a precision of 1-1.5° after Run 3 and 0.3-0.4° in the late 2030'

Conclusion and perspectives

$$B^- \to D^0 (\to K_s \pi^+ \pi^- \pi^0) K^-$$

- Twice the Belle statistics with a similar purity -> We expect a statistical error of ~6-7°
- This Mode will also be used to participate to an Amplitude Analysis of D° decay
 - Common work with Tommaso Pajero who works on decay $B^{\pm} \rightarrow D^{*\pm} (\rightarrow D^0 \pi) \mu \nu$ Ο
- We expect a luminosity x5 during Run 3 that is just starting Thank you for your attention.
 With a L0 trigger from 1MHz on Runs 1&2 to 400000 Note : I notably work on Scifi commissioning (Electronics Soft Control, Geometry description in software, Pacific Board Time-alignment)
 - Updates of most of the other sub-detectors Ο
- About y measurement -> expect combination of measurements to give a precision of 1-1.5° after Run 3 and 0.3-0.4° in the late 2030'

BACKUP

Backup : LHCb detector

24

Backup : Selection

MVA 1		
Nom de la variable	Description	
Log_D0PT	Impulsion transverse de D0	
Log_DDIRA	Alignement de l'impulsion reconstruite et de la direction de vol du candidat D	
Log_D0FDchi2	Signification statistique de la distance du vertex du candidat reconstruit D par rapport au Primary Vertex	
Log_D0maxDOCA	Distance maximum des plus courtes approches pour toutes les paires possibles de particules filles de D	
Log_Delta_KsD_ZERR	Distance entre les candidats D et Ks le long de l'axe du détecteur (le candidat Ks doit être détecté plus loin que le candidat D)	
Log_KsD_DIRA	Alignement de l'impulsion reconstruite et de la direction de vol du candidat Ks.	
DProbChi2Vtx	Qualité du Vertex du D	
DdaughtMinsIP	Minimum des paramètres d'impact des particules filles de D	
Log_KSLTSignif	Signification statistique de la durée de vie (longue) du candidat Ks. Débarrasse des paires de pions du Primary Vertex se faisant passer pour des Ks	
Log_ET_gam_Moy	Energie transverse moyenne des photons issus du candidat π^0	
IDgamE	Probabilité que les candidats photons ne soient pas des électrons	
IDgamH	Probabilité que les candidats photons ne soient pas des hadrons	
Log_KS_BPVIPCHI2MinDaught	Minimum des paramètres d'impact des particules filles de Ks ⁰	
DdaughtMinPT	Minimum des moments transverses des pions chargés issus du D	

Backup : Selection

MVA 2			
Nom de la variable	Description		
cosThetaHely	Angle d'hélicité entre D et B		
CosD_bachT_xy	Angle ϑ _{HvsD} entre D et la trace célibataire H (Π΄ ou K΄) dans le plan transverse		
BDIRA	Alignement de l'impulsion reconstruite et de la direction de vol du candidat B		
B_PTasy_cone15	Asymétrie de l'impulsion transverse de B dans un cône de 1.5 rad		
The_MLP_D	Variable de sortie du MVA 1		
log_B_IPchi2	Log de la Signification du paramètre d'impact du candidat reconstruit B par rapport au PV		
log_DiffZ_DvsB_Err	Log de la distance entre les candidats D et B le long de l'axe du détecteur		
BProbChi2Vtx	Qualité du vertex du B		
BFDChi2	Signification statistique de la distance du vertex du candidat reconstruit B par rapport au PV		
bachPT	Impulsion transverse du bachelor track		