

Measurement of the mixing-induced CP-violating observables in $B_{\mathcal{S}} \rightarrow \phi \gamma$

Yingrui Hou LAPP GDR-InF Annual Workshop 2022

Why $B_s \rightarrow \phi \gamma$?

- γ: Left-handed + Right-handed
 - Enhancement?
 - ✓ Effect on mixing-induced CP asymmetries
 - ✓ Sensitive to the NP

$$\mathcal{H}_{\rm rad} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (C_{7R} \mathcal{O}_{7R} + C_{7L} \mathcal{O}_{7L})$$

$$\Gamma(t)^{\pm} \propto e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - A^{\Delta} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \pm \mathcal{C} \cos(\Delta m_{s}t) \mp \mathcal{S} \sin(\Delta m_{s}t) \right]$$

$$\mathcal{S} = \frac{2\mathcal{I}m[\frac{q}{p}(A_LA_L^* + A_RA_R^*)]}{|A_L|^2 + |\overline{A_L}|^2 + |A_R|^2 + |\overline{A_R}|^2}$$

• In the SM, with LO:

$$S_{O7} = -2\frac{m_s}{m_b}\sin(\phi_s - \phi_s) = 0$$

Experiment status

- Tagged and untagged time-dependent result with LHCb Run1 data. [PRL 118, 021801 (2017), PRL 123, 081802 (2019)]
 - $A^{\Delta} = -0.669^{+0.364}_{-0.398}(stat.) \pm 0.170(syst.) \pm 0.096(ext.)$
 - $S = 0.427 \pm 0.304(stat.) \pm 0.111(syst.) \pm 0.008(ext.)$
 - $C = 0.106 \pm 0.289(stat.) \pm 0.109(syst.) \pm 0.013(ext.)$

- Expected improvements
 - Larger data sample Run1 + Run2 (~5 times to Run1)
 - Higher efficiency in event selections (cut-based \rightarrow BDT)
 - Better flavour tagging performance (new tagging tech)
 - Better control in systematics.

Formalism and Analysis strategy

• The decay time PDF: $F(t, q | \omega, \sigma_t) = \Gamma(t', q | \omega) \otimes R_{acc}(t, t' | \sigma_t)$ $> \Gamma(t', q | \omega) = e^{-\Gamma_s t'} \left[\cosh\left(\frac{\Delta\Gamma_s t'}{2}\right) - A^{\Delta} \sinh\left(\frac{\Delta\Gamma_s t'}{2}\right) + q(1 - 2\omega)C\cos(\Delta m_s t') - q(1 - 2\omega)S\sin(\Delta m_s t') \right]$

 $\geq R_{acc}(t,t'|\sigma_t) = \epsilon_{acc}(t)R(t,t'|\sigma_t)$

Formalism and Analysis strategy

• The decay time PDF: $F(t, q | \omega, \sigma_t) = \Gamma(t', q | \omega) \otimes R_{acc}(t, t' | \sigma_t)$ $F(t', q | \omega) = e^{-\Gamma_s t'} \left[\cosh\left(\frac{\Delta\Gamma_s t'}{2}\right) - A^{\Delta} \sinh\left(\frac{\Delta\Gamma_s t'}{2}\right) + q(1 - 2\omega)C\cos(\Delta m_s t') - q(1 - 2\omega)S\sin(\Delta m_s t') \right]$

 $\geq R_{acc}(t,t'|\sigma_t) = \epsilon_{acc}(t)R(t,t'|\sigma_t)$

Event selection and Mass Fit

Selections

• Cuts: Tracks $\chi^2_{IP} > 55$, $p_T(B) > 3 \text{ GeV/}c$, $\Delta M(\phi) < 15 \text{ Mev/}c^2$

➢ Improvement in selection (BDT)➢ Input samples: RSB-data(BKG), Signal MC(Signal)➢ Features used: pT, χ^2_{IP} , η , θ_{DIRA} , Min($\Delta \chi^2_{vtx}$)

Time acceptance

Time acceptance model

•
$$\epsilon_{acc}(t) = e^{-\alpha t} \frac{[a(t-t_0)]^n}{1+[a(t-t_0)]^n}, t \ge t_0$$

- *a*, *n*: Low decay times
- *α*: High decay times.
- t₀: Efficiency 0 time point
- Simultaneous fit (Sig+Con MC)
 - *a*, *n*: Fixed as same value for both channels
 - t₀, α: a global offset between MC and data is allowed, same for both channel

Update for new stripping version:

- Simultaneous fit on signal data + control data + signal MC + control MC.
- Acceptance ratio between signal and control channel is fixed.

Time resolution

Double-Gaussian Model

Decay time uncertainty from kinematic fit

 $R(\Delta t; f, \mu, s_1, s_2 | \sigma_t) = f G_1(\Delta t; \mu, s_1 \sigma_t) + (1 - f) G_2(\Delta t; \mu, s_2 \sigma_t)$

- Data-MC consistency check
 - Using prompt $\phi \gamma$ data and MC sample

For better controlling systematics [LHCb-TALK-2022-041, CERN-OPEN-99-030 ► $D = e^{-\frac{1}{2}\sigma_D^2 \Delta m^2} \Rightarrow$ Effective single **Gaussian resolution** > Numerically: $D = \frac{1}{N} \sum \cos(\Delta m t)$ > Calibrated σ_t with σ_D in decay time uncertainty bins.

 $R(t') \otimes \sin(\Delta mt') = \sin(\Delta mt)$ $dt' R(t') \cos(\Delta mt') = D \sin(\Delta mt)$

Flavour Tagging (FT)

- Tagging at LHCb
 - OS tagger + SS tagger
 - $\epsilon_{tag} = \frac{N_{tag}}{N_{tag} + N_{untag}}, \ \omega = \frac{N_{wrong}}{N_{tag}}$
 - $\epsilon_{eff} = \epsilon_{tag} (1 2\omega)^2 \propto 1/\sigma_{stat}^2$
 - "Classic"

Choose taggers + Combine

LHCb-FIGURE-2020-002

FT Calibration

Calibration strategy

- OS tagger: OSCharm, OSElectronLatest, OSKaonLatest, OSVtxCh, OSMuonLatest; SS tagger: SSKaonLatest
- Control sample: OS: $B_u^+ \to J/\psi K^+$; SS: $B_s \to D_s^- \pi^+$ [Run1 and Run2 MC & Data]

Calibration model

ω(η) = p0 + p1(η - ⟨η⟩),
ω(η) is the true mistag rate, η is the mistag rate predicted by tagging algorithm, p0 and p1 are the calibration parameters.

• Unbinned method:

 $PDF(a|\eta) = (1 - a)\omega(\eta) + a[1 - \omega(\eta)]$, a = 0, 1(wrong, right tagged)

FT Calibration

Tagging performance of Run1 data

- **SS** $\epsilon_{eff} = 2.26\%$
- **OS** $\epsilon_{eff} = 2.84\%$
- Combination $\epsilon_{eff} = 4.88\%$

 ${\sim}20\%~\varepsilon_{eff}$ increase between J/ $\psi\varphi$ Run1 and 201516 analysis

[EPJC 79 (2019) 706] [PRL 114 (2015) 041801]

Inclusive Flavour Tagging (IFT)

- Combine info of all non-signal tracks into the tag decision
 - Tagging efficiency ~100%
 - Support one single framework rather than 8 separate taggers

- IFT is now ready for test and check on Run2 data.
- Expected to increase B_s ϵ_{eff} by ~8%.

 \blacktriangleright Decrease the σ_{stat} by ~4%

pos.sissa.it/321/230/pdf

Expected Constraint on C7'

⇒Constraint on C7' with expected Run1 + Run2 $B_s \rightarrow \phi \gamma$ precision. ⇒Improvement in selections and tagging power are included. ⇒Assuming the systematics are at same level as Run1 analysis. ⇒Assuming the mean value of S and A^{Δ} are same as SM predictions. ⇒Good constraint on C7', competitive with $B^0 \rightarrow K^*ee$.

Summary and outlook

- As one of the sensitive antennae to the NP, $B_s \rightarrow \phi \gamma$ is expected to provide better constraints on theory.
- The mixing-induced CPV observables A^{Δ}, C, S are expected to have significant improved precision
 - Whole Run1 and Run2 data
 - Optimized selections, time description, FT performance
 - Analysis note is under preparation[stay tuned...]
 - Other possibilities with $b \rightarrow s\gamma$
 - CPV when having more resonances, inclusive $B_s \rightarrow hh\gamma$ (need amplitude/angular parameters)
 - Virtual γ process, like $B_s \rightarrow \phi ee$ (angular observables + time-dependent CP observables)[arXiv:2210.11995]
 - Promising Run3
 - High luminosity, software/detector upgrade (better performance...)

THANKSFORUSTENING

BARDERDO VIA