Looking Beyond the Standard Model with neutrons and nuclei

GDR Intensity Frontier 2-4 Nov. 2022

G. Pignol M. Versteegen

Why use n and nuclei?

Beta decay

n and nuclei extensively used to establish the properties of the weak interaction in the framework of the SM

Effective Field Theory

Model independent approach : no assumption on NP origin

Wilson coefficients :

$$\epsilon_i \propto \left(\frac{m_W}{\Lambda}\right)^2 \sim 10^{-3}$$

TeV NP scale

Beta decay brings independent and competitive constraints to HEP in the weak sector when going to 0.1% level

M. González-Alonso, O. Naviliat-Cuncic, N. Severijns Prog. Part. Nucl. Phys. (2019) A. Falkowski, M. González-Alonso, O. Naviliat-Cuncic JHEP04 (2021)

n beta decay Lagrangian

$$-\mathcal{L}_{LY} = C_V \left(\bar{p} \gamma^\mu n + \frac{C_A}{C_V} \bar{p} \gamma^\mu \gamma_5 n \right) \times \bar{e} \gamma_\mu (1 - \gamma_5) \nu_e + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + hc$$

+ right-handed neutrinos

SM "V-A" structure

Exotic currents : S and T P omitted

T.Lee, C-N Yang Phys. Rev. 104 (1956) M. González-Alonso, Colloque GANIL (2019)

n beta decay Lagrangian

P omitted

n beta decay Lagrangian

$$-\mathcal{L}_{LY} = C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e + \frac{C_S \bar{p} n}{\bar{p} n} \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + hc$$

SM "V-A" structure

Exotic currents : S and T P omitted

T.Lee, C-N Yang Phys. Rev. 104 (1956) M. González-Alonso, Colloque GANIL (2019)

n beta decay Lagrangian

M. González-Alonso, Colloque GANIL (2019)

J.D Jackson, S.B Treiman, H.W Wyld Nuclear Phys 4 (1957)

n beta decay Lagrangian

Decay rate distribution for polarized nuclei

$$\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = \frac{dW_0}{dW_0} \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}$$

 \square Ft values : V_{ud}, b

Beta spectrum shape : b

□ Correlation measurements : a, b, D

T.Lee, C-N Yang Phys. Rev. 104 (1956) M. González-Alonso, Colloque GANIL (2019) J.D Jackson, S.B Treiman, H.W Wyld Nuclear Phys 4 (1<u>95</u>7)

Ft values : total decay rates

Unitarity test of the CKM matrix 1st row :

 $0^+ \rightarrow 0^+$ superallowed Fermi transition :

222 individual measurements from 23 decays :

 $|\mathbf{V_{ud}}| = 0.97373 \pm 0.00031$

~300 stable isotopes

Beta spectrum shape

Beta energy spectrum for non polarized nuclei :

$$\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}$$
$$dW = dW_0 \times \xi \left(1 + b \frac{m}{E_e} \right)$$

Highest sensitivity candidates due to kinematics : endpoint energy 1-4 MeV All theoretical corrections under control at 0.1% level

Experimental Challenges

- Electron backscattering
- energy loss in source
- Detector dead layer

1 **d**G G dE, E_e Fit of B energy spectrum Eq.(7) 10-2 29 10-3 10¹ End-point energy, E_0 (MeV)

Set-ups : 4π , MWDC, CRES...

Ongoing programs with ⁶He@LPC, ¹¹⁴In@Leuven, ²⁰F...

M. González-Alonso, O. Naviliat-Cuncic Phys. Rev. C 94 (2016) L. Hayen et al, Rev. Mod. Phys. 90 (2018)

Correlation measurements : WISArD

Decay rate for non polarized nuclei $\frac{dW(\mathbf{J})}{dE_{e}d\Omega_{e}d\Omega_{\nu}} = dW_{0} \times \xi \left\{ 1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e}E_{\nu}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + D \frac{\mathbf{p}_{e} \times \mathbf{p}_{\nu}}{E_{e}E_{\nu}} \right) \right\}$ $dW = dW_{0} \times \xi \left(1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e}E_{\nu}} + b \frac{m}{E_{e}} \right)$

Correlation measurements : WISArD

Correlation measurements : WISArD

Nuclear β -delayed p emission in ³²Ar ³²Ar T1/2 = 98 ms Org = 11134.7 keV recoil Fermi $0^+ \rightarrow 0^+$ transition from GS to IAS B.R. (%) 22.65(15) 5046 Recoil energy ~100s eV IAS 3772 3.8(2) Beta delayed p emission ~ 3 MeV IAS : $\Gamma \simeq 20 \text{ eV} \Leftrightarrow \text{T}_{1/2} \simeq 10^{-17} \text{ s}$ θ 1/2+ ν_{e} p emission in flight from the recoil ³¹S + p 32CI ΔE β -p coincidence measurement Sipm ۵0¹× 1.4

- Beta detector with detection threshold below 10 keV
- □ Strong magnetic field
- 2 symmetrical p detectors with resolution < 15 keV and high solid angle

WISARD at ISOLDE

 β detector: plastic scintillator and SiPM

6 μm mylar Catcher

2 x 4 proton detectors

+ FASTER DAQ

800 Up detector singles coincidences 600 400 Counts 200 3200 3220 3240 3260 3280

Proton energy (keV)

Proof-of-principle (2018)

- Readily available β and p detectors
- ~ 1700 pps of ³²Ar instead of 3000 nominal
- ~ 35h of beamtime

 $\Delta E_F = 4.49(3) \ keV$ $\tilde{a}_F = 1.007(32)_{stat}(25)_{syst}$

⇒ 3rd best result

WISARD at ISOLDE

Catcher foil

VBL

Diagnostics

Exclusion plot from D. Atanasov V. Araujo-Escalona et al. Phys. Rev. C 101 (2020)

 β detector: plastic

scintillator and SiPM

6 μm mylar Catcher

+ FASTER DAQ

2 x 4 proton detectors

(WITCH magnet) Proof-of-principle (2018)

in B = 4 T

Readily available β and p detectors ~ 1700 pps of ³²Ar instead of 3000 nominal ~ 35h of beamtime

> $\Delta E_F = 4.49(3) \ keV$ $\tilde{a}_F = 1.007(32)_{stat}(25)_{svst}$

⇒ 3rd best result

WISARD at ISOLDE

/BL-

Correlation measurements : many projects

$$\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}$$

...

¹¹⁴ln @ ISOLDE ⁶He @ LPC (bSTILED) ⁶He @ NSCL

⁶He @ LPC (Paul trap) ⁸Li @ ANL (Paul trap) ⁶He @ ANL (MOT) ³²Ar @ Texas A&M (Penning) ^{38m}K @ TRIUMF (MOT) n @ aSPECT THE MORA PROJECT

See talk by N. Goyal

18

>> PLAY >>

<< REWIND <<</pre>

If $d \neq 0$ the process and its time reversed version are different.

Basics of nEDM measurement

 $2\pi f = \frac{2\mu}{\hbar}B \pm \frac{2d}{\hbar}|E|$

Larmor frequency $f = 30 \text{ Hz} @ B = 1 \mu\text{T}$

If $d = 10^{-26} e \text{ cm}$ and E = 11 kV/cmone full turn in a time

To detect such a minuscule coupling

- Long interaction time
- High intensity/statistics
- Control the magnetic field

 $\frac{\pi\hbar}{dE} = 200 \text{ days}$

EDMs beyond the SM: modified Higgs couplings

Modified Higgs-fermion Yukawa coupling

$$\mathcal{L} = -\frac{y_f}{\sqrt{2}} \left(\kappa_f \bar{f} f h + i \tilde{\kappa}_f \bar{f} \gamma_5 f h \right)$$
CP

Generates EDM at 2 loops Barr, Zee, PRL 65 (1990)

Brod, Haich, Zupan, 1310.1385 Brod, Stamou, 1810.12303 Brod, Skodras, 1811.05480 ATLAS, PRL 125, 061802 (2020)

Thank you for your attention

Back up

EDMs of diamagnetic atoms

Very stringent EDM limits of diamagnetic atoms with nuclear spin $\frac{1}{2}$:

- Mercury-199: atom-light interaction permits super-precise monitoring of the spin precession
- Xenon-129: very long interaction times (many hours)

Due to electron shielding, nuclear EDMs do not generate atomic EDMs.

Instead, atomic EDMs could be induced by

- T-violating e-N interactions
- A T-odd nuclear deformation (Schiff moment)
- \rightarrow generating an E field inside the nucleus
- \rightarrow pulling the s electrons.
- \rightarrow atomic EDM

T-violating N-N interactions or nucleon EDM generate a nuclear Schiff moment, the effect is larger in heavy nuclei, and enhanced in octupole-deformed nuclei like radium-225.

