Looking Beyond the Standard Model with neutrons and nuclei

GDR Intensity Frontier 2-4 Nov. 2022

G. Pignol M. Versteegen

Why use n and nuclei ?

Beta decay

n and nuclei extensively used to establish the properties of the weak interaction in the framework of the SM

Effective Field Theory

Model independent approach : no assumption on NP origin

Wilson coefficients :

$$
\epsilon_i \propto \left(\frac{m_W}{\Lambda}\right)^2 \, \sim 10^{-3}
$$

TeV NP scale

 \Rightarrow Beta decay brings independent and competitive constraints to HEP in the weak sector when going to 0.1% level

M. González-Alonso, O. Naviliat-Cuncic, N. Severijns Prog. Part. Nucl. Phys. (2019) A. Falkowski, M. González-Alonso, O. Naviliat-Cuncic <i>JHEP04 (2021)
A. Falkowski, M. González-Alonso, O. Naviliat-Cuncic JHEP04 (2021) work (solid black line) and from LHC data (dashed blue and dotted red lines) α .

n beta decay Lagrangian

$$
-\mathcal{L}_{LY} = C_V \left(\bar{p}\gamma^{\mu}n + \frac{C_A}{C_V} \bar{p}\gamma^{\mu}\gamma_5 n \right) \times \bar{e}\gamma_{\mu} (1 - \gamma_5)\nu_e
$$

SM "V-A" structure
+ $C_S \bar{p}n \times \bar{e}(1 - \gamma_5)\nu_e + \frac{1}{2} C_T \bar{p}\sigma^{\mu\nu}n \times \bar{e}\sigma_{\mu\nu} (1 - \gamma_5)\nu_e + hc$
Exotic currents : S and T

 $+ right-handed$ neutrinos

M "V-A" structure . Analogous to the vector interaction in electrodynamics (see

'neutral particle (neutral particle (neutral particle (neutron) that resides insides insides insides insides i the nucleus of an atom. Fermi developed the theory of *β*-decay based on the Pauli

> Exotic currents : S and T *P* omitted *i ^p*(*x*)*γ^µ ⁿ* (*x*) ¯

where *C^V* is the vector coupling constant and (*x*)'s are the fields (Dirac fields)

Hamiltonian involves ^a current ⇥ current interaction. In the system of units with ⁼ 1 and *^c* ⁼ 1, the charge of an electron is dimensionless and the coupling constant *C^V* has ^a dimension of *^M [−]* ² making it an effective coupling constant (Fermi Constant ²At that time the neutrino was only ^a hypothetical particle introduced to explain the continuous energy spectrum in *β*-decay using the energy-momentum conservation laws. It was only in 1954 that neutrinos were " discovered" when Cowan and Reines detected the emission of antineutrinos from

> *T.Lee, C-N Yang Phys. Rev. 104 (1956)* 5 *M. González-Alonso, Colloque GANIL (2019)*

^p(*x*)*γ^µ ⁿ* (*x*) is ^a vector current and the

n beta decay Lagrangian

$$
-\mathcal{L}_{LY} = C_V \left(\bar{p}\gamma^{\mu}n + \frac{C_A}{C_V} \bar{p}\gamma^{\mu}\gamma_5 n \right) \times \bar{e}\gamma_{\mu} (1 - \gamma_5)\nu_e
$$

\n
$$
+ C_S \bar{p}n \times \bar{e}(1 - \gamma_5)\nu_e + \frac{1}{2} C_T \bar{p}\sigma^{\mu\nu}n \times \bar{e}\sigma_{\mu\nu} (1 - \gamma_5)\nu_e + hc
$$

\n
$$
+ \text{Right-handed neutrinos} \qquad \text{SM} \otimes C_i = C'_i
$$

\n**EXECUTE:** S and T

'neutral particle (neutral particle (neutral particle (neutron) that resides insides insides insides insides i the nucleus of an atom. Fermi developed the theory of *β*-decay based on the Pauli

^p(*x*)*γ^µ ⁿ* (*x*) ¯

where *C^V* is the vector coupling constant and (*x*)'s are the fields (Dirac fields)

Hamiltonian involves ^a current ⇥ current interaction. In the system of units with ⁼ 1 and *^c* ⁼ 1, the charge of an electron is dimensionless and the coupling constant *C^V* has ^a dimension of *^M [−]* ² making it an effective coupling constant (Fermi Constant ²At that time the neutrino was only ^a hypothetical particle introduced to explain the continuous energy spectrum in *β*-decay using the energy-momentum conservation laws. It was only in 1954 that neutrinos were " discovered" when Cowan and Reines detected the emission of antineutrinos from

> *T.Lee, C-N Yang Phys. Rev. 104 (1956)* 5 *M. González-Alonso, Colloque GANIL (2019)*

P omitted

^p(*x*)*γ^µ ⁿ* (*x*) is ^a vector current and the

n beta decay Lagrangian

$$
-\mathcal{L}_{LY} = C_V \left(\bar{p}\gamma^{\mu}n + \frac{C_A}{C_V} \bar{p}\gamma^{\mu}\gamma_5 n \right) \times \bar{e}\gamma_{\mu} (1 - \gamma_5)\nu_e
$$

SM "V-A" structure
+ $C_S \bar{p}n \times \bar{e}(1 - \gamma_5)\nu_e + \frac{1}{2} C_T \bar{p}\sigma^{\mu\nu}n \times \bar{e}\sigma_{\mu\nu} (1 - \gamma_5)\nu_e + hc$
Exotic currents : S and T

. Analogous to the vector interaction in electrodynamics (see **SM "V-A" structure**

^p(*x*)*γ^µ ⁿ* (*x*) ¯ *P* omitted Exotic currents : S and T

where *C^V* is the vector coupling constant and (*x*)'s are the fields (Dirac fields)

Hamiltonian involves ^a current ⇥ current interaction. In the system of units with ⁼ 1 and *^c* ⁼ 1, the charge of an electron is dimensionless and the coupling constant *C^V* has ^a dimension of *^M [−]* ² making it an effective coupling constant (Fermi Constant ²At that time the neutrino was only ^a hypothetical particle introduced to explain the continuous energy spectrum in *β*-decay using the energy-momentum conservation laws. It was only in 1954 that neutrinos were " discovered" when Cowan and Reines detected the emission of antineutrinos from

'neutral particle (neutral particle (neutral particle (neutron) that resides insides insides insides insides i the nucleus of an atom. Fermi developed the theory of *β*-decay based on the Pauli

T.Lee, C-N Yang Phys. Rev. 104 (1956) 5 *M. González-Alonso, Colloque GANIL (2019)*

^p(*x*)*γ^µ ⁿ* (*x*) is ^a vector current and the

n beta decay Lagrangian

$$
-{\cal L}_{LY} = C_V \left(\bar{p}\gamma^{\mu}n + \frac{C_A}{C_V}\bar{p}\gamma^{\mu}\gamma_5 n \right) \times \bar{e}\gamma_{\mu}(1-\gamma_5)\nu_e
$$

SM "V-A" structure
+ $C_S \bar{p}n \times \bar{e}(1-\gamma_5)\nu_e + \frac{1}{2}C_T \bar{p}\sigma^{\mu\nu}n \times \bar{e}\sigma_{\mu\nu}(1-\gamma_5)\nu_e + hc$
Exotic currents : S and T
P omitted

Decay rate distribution for polarized nuclei β -v correlation coefficient CP conserving Access to C_s and C_T quadratically Fierz interference term CP conserving Access to C_S and C_T linearly erm when \sim when \sim of \sim \sim coefficient the nuclear reactor. Reines reactor. Reines reactor. Reines received the Nobel Prize in 1995 for this discovery. Acces to C_A , C_A ['], C_{V} , C_V ['] linearly where *C^V* is the vector coupling constant and (*x*)'s are the fields (Dirac fields) *^p*(*x*)*γ^µ ⁿ* (*x*) is ^a vector current and the Hamiltonian involves a current $\frac{1}{2}$ current interaction. In the system of units with with $\left(\begin{array}{cc} \cdot & \mathbf{p}_e \\ \cdot & \mathbf{p}_v \end{array} \right)$ is dimensionless and the constant c $P(A \frac{w}{D} + B \frac{w}{D} + D \frac{w}{E} \frac{w}{E})$ \mathcal{A} that time the neutrino was only a hypothetical particle introduced to explain the continuous continuou energy spectrum in *β*-decay using the energy-momentum conservation laws. It was only in 1954 that *T.Lee, C-N Yang Phys. Rev. 104 (1956)* 5

M. González-Alonso, Colloque GANIL (2019) J.D Jackson, S.B Treiman, H.W Wyld Nuclear Phys 4 (1957)

'neutral particle (neutral particle (neutral particle (neutron) that resides insides insides insides insides i the nucleus of an atom. Fermi developed the theory of *β*-decay based on the Pauli

6

n beta decay Lagrangian

$$
-{\cal L}_{LY} = C_V \left(\bar{p}\gamma^{\mu}n + \frac{C_A}{C_V}\bar{p}\gamma^{\mu}\gamma_5 n \right) \times \bar{e}\gamma_{\mu}(1-\gamma_5)\nu_e
$$

SM "V-A" structure
+ $C_S \bar{p}n \times \bar{e}(1-\gamma_5)\nu_e + \frac{1}{2}C_T \bar{p}\sigma^{\mu\nu}n \times \bar{e}\sigma_{\mu\nu}(1-\gamma_5)\nu_e + hc$
Exotic currents : S and T
P omitted

Decay rate distribution for polarized nuclei where *C^V* is the vector coupling constant and (*x*)'s are the fields (Dirac fields) *^p*(*x*)*γ^µ ⁿ* (*x*) is ^a vector current and the $\left(\begin{array}{cc} \mathbf{p}_e & \mathbf{p}_u & \mathbf{p}_e \times \mathbf{p}_u \end{array} \right)$ $P(A \frac{w}{D} + B \frac{w}{D} + D \frac{w}{E} \frac{w}{E})$ \mathcal{L} that time the neutrino was only a hypothetical particle introduced to explain the continuous continuou energy spectrum in *β*-decay using the energy-momentum conservation laws. It was only in 1954 that

□ Ft values : V_{ud}, b

□ Beta spectrum shape : b

□ Correlation measurements : a, b, **D**

7 *T.Lee, C-N Yang Phys. Rev. 104 (1956)* 5 *M. González-Alonso, Colloque GANIL (2019) J.D Jackson, S.B Treiman, H.W Wyld Nuclear Phys 4 (1957)*

neutrinos were " discovered" when Cowan and Reines detected the emission of antineutrinos from

'neutral particle (neutral particle (neutral particle (neutron) that resides insides insides insides insides i the nucleus of an atom. Fermi developed the theory of *β*-decay based on the Pauli

Ft values : total decay rates

Unitarity test of the CKM matrix $1st$ row :

 0^+ \longrightarrow 0⁺ superallowed Fermi transition :

222 individual measurements from 23 decays :

 $|{\bf V_{ud}}|=0.97373\pm 0.00031$

~300 stable isotopes

Beta spectrum shape

■ Beta energy spectrum for non polarized nuclei :

$$
\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{<\mathbf{J} >}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}
$$

$$
dW = dW_0 \times \xi \left(1 + b \frac{m}{E_e} \right)
$$

Highest sensitivity candidates due to kinematics : endpoint energy 1-4 MeV All theoretical corrections under control at 0.1% level

Experimental Challenges

- □ Electron backscattering
- □ energy loss in source
- □ Detector dead layer

Set-ups : 4π , MWDC, CRES... Ongoing programs with ⁶He@LPC, ¹¹⁴In@Leuven, ²⁰F...

11 *L. Hayen et al, Rev. Mod. Phys. 90 (2018)M. González-Alonso, O. Naviliat-Cuncic Phys. Rev. C 94 (2016)*

Optimal endpoint: 1-4 MeV *[M GA & Naviliat-Cuncic, PRC94 (2016)]*

Correlation measurements : WISArD

Decay rate for non polarized nuclei
 $\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_e} = dW_0 \times \xi \left\{ 1 + a \frac{p_e \cdot p_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{<\mathbf{J}>}{J} \cdot \left(A \frac{p_e}{E_e} + B \frac{p_\nu}{E_\nu} + D \frac{p_e \times p_\nu}{E_e E_\nu} \right) \right\}$ $dW = dW_0 \times \xi \left(1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m}{E_e} \right)$

Correlation measurements : WISArD

Correlation measurements : WISArD

Nuclear β -delayed p emission in ³²Ar 32 Ar T1/2 = 98 ms $Q_{rs} = 11134.7$ keV recoil + e \Box Fermi 0⁺ \rightarrow 0⁺ transition from GS to IAS **B.R. (%)** 5046 22.65(15) □ Recoil energy ~100s eV IAS p 3772 $3.8(2)$ □ Beta delayed p emission ~ 3 MeV \Box IAS : $\Gamma \sim 20 \text{ eV} \otimes T_{1/2} \sim 10^{-17} \text{ s}$ θ $1/2^+$ $v_{\rm e}$ ➭ p emission in flight from the recoil $31S + p$ $32Cl$ ΔE β -p coincidence measurement **SiPM** $\frac{1}{2}$ $\frac{1}{2}$ p in SiDOWN p in SiUPvector current □ Beta detector with detection 1.2 threshold below 10 keV □ Strong magnetic field $\frac{\text{counts}}{\text{cos}}$ $\overline{{\rm Si}\, {\rm UP}}$ □ 2 symmetrical p detectors B^+ with resolution < 15 keV and 0_l high solid angle

³²Ar beam

Si DOWN

Detector Plane

3300 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420

energy (keV)

 0.2

WISArD at ISOLDE

Proof-of-principle (2018)

 $\Delta E_F = 4.49(3) \; keV$

 $\tilde{a}_F = 1.007(32)_{stat}(25)_{syst}$

➭ **3rd best result**

 β detector: plastic scintillator and SiPM

6 µm mylar Catcher

2 x 4 proton detectors (300 µm Si Detectors) + FASTER DAQ

WISArD at ISOLDE

Exclusion plot from D. Atanasov V. Araujo-Escalona et al. Phys. Rev. C 101 (2020)

2 x 4 proton detectors (300 µm Si Detectors) + FASTER DAQ in $B = 4T$ (WITCH magnet)

Proof-of-principle (2018)

- \Box Readily available β and p detectors □ ~ 1700 pps of ³²Ar instead of 3000 nominal
- □ ~ 35h of beamtime

 $\Delta E_F = 4.49(3) \; keV$ $\tilde{a}_F = 1.007(32)_{stat}(25)_{syst}$

➭ **3rd best result**

WISArD at ISOLDE

 $\frac{1}{2}$

Correlation measurements : many projects

$$
\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{<\mathbf{J}>}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}
$$

 114 In @ ISOLDE ⁶He @ LPC (bSTILED)

⁶He @ NSCL

...

⁶He @ LPC (Paul trap) ⁸Li @ ANL (Paul trap) ⁶He @ ANL (MOT) 32Ar @ Texas A&M (Penning) 38mK @ TRIUMF (MOT) n @ aSPECT

...

THE MORA PROJECT **MATTER'S ORIGIN FROM RADIOACTIVITY**

See talk by N. Goyal

18

\rightarrow PLAY \rightarrow

If $d \neq 0$ the process and its time reversed version are different.

Basics of nEDM measurement

 $2\pi f =$

 2μ

 \hbar

 $\overline{B} \pm$

 $2d$

 \hbar

Larmor frequency $f = 30$ Hz $\omega B = 1 \mu T$

If $d = 10^{-26} e \text{ cm}$ and $E = 11 \text{ kV/cm}$ one full turn in a time

 $|E|$

To detect such a minuscule coupling

- Long interaction time
- High intensity/statistics
- Control the magnetic field

 $\pi\hbar$ $\frac{nn}{dE}$ = 200 days

EDMs beyond the SM: modified Higgs couplings

Modified Higgs-fermion Yukawa coupling

$$
\mathcal{L} = -\frac{y_f}{\sqrt{2}} \left(\kappa_f \bar{f} f h + i \tilde{\kappa}_f \, \bar{f} \gamma_5 f h \right)
$$

Generates EDM at 2 loops Barr, Zee, PRL 65 (1990)

Brod, Haich, Zupan, 1310.1385 Brod, Stamou, 1810.12303 Brod, Skodras, 1811.05480 ATLAS, PRL 125, 061802 (2020)

Thank you for your attention

Back up

EDMs of diamagnetic atoms

Very stringent EDM limits of diamagnetic atoms with nuclear spin ½ :

- Mercury-199: atom-light interaction permits super-precise monitoring of the spin precession
- Xenon-129: very long interaction times (many hours)

Due to electron shielding, nuclear EDMs do not generate atomic EDMs.

Instead, atomic EDMs could be induced by

- T-violating e-N interactions
- A T-odd nuclear deformation (Schiff moment)
- \rightarrow generating an E field inside the nucleus
- \rightarrow pulling the s electrons.
- \rightarrow atomic EDM

T-violating N-N interactions or nucleon EDM generate a nuclear Schiff moment, the effect is larger in heavy nuclei, and enhanced in octupole-deformed nuclei like radium-225.

