Looking Beyond the Standard Model with neutrons and nuclei

GDR Intensity Frontier 2-4 Nov. 2022

G. Pignol M. Versteegen

Why use n and nuclei?

Beta decay

n and nuclei extensively used to establish the properties of the weak interaction in the framework of the SM

 Effective Field Theory Model independent approach : no assumption on NP origin

Wilson coefficients :

$$\epsilon_i \propto \left(rac{m_W}{\Lambda}
ight)^2 \sim 10^{-3}$$
 TeV NP scale

Beta decay brings independent and competitive constraints to HEP in the weak sector when going to 0.1% level

M. González-Alonso, O. Naviliat-Cuncic, N. Severijns Prog. Part. Nucl. Phys. (2019) A. Falkowski, M. González-Alonso, O. Naviliat-Cuncic JHEP04 (2021)

n beta decay Lagrangian

$$-\mathcal{L}_{LY} = C_V \left(\bar{p} \gamma^\mu n + \frac{C_A}{C_V} \bar{p} \gamma^\mu \gamma_5 n \right) \times \bar{e} \gamma_\mu (1 - \gamma_5) \nu_e + \frac{C_S \bar{p} n}{F_0} \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + hc$$

+ right-handed neutrinos

SM "V-A" structure

Exotic currents : S and T P omitted

T.Lee, C-N Yang Phys. Rev. 104 (1956) M. González-Alonso, Colloque GANIL (2019)

n beta decay Lagrangian

$$-\mathcal{L}_{LY} = C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + hc -+ right-handed neutrinos \qquad SM \Leftrightarrow C_i = C_i'$$

P omitted

SM "V-A" structure

Exotic currents : S and T

T.Lee, C-N Yang Phys. Rev. 104 (1956) M. González-Alonso, Colloque GANIL (2019)

n beta decay Lagrangian

$$\mathcal{L}_{LY} = C_V \left(\bar{p} \gamma^\mu n + \frac{C_A}{C_V} \bar{p} \gamma^\mu \gamma_5 n \right) \times \bar{e} \gamma_\mu (1 - \gamma_5) \nu_e + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + hc -+ right-handed neutrinos SM $\Rightarrow C_i = C_i$$$

 $\overline{C}_{V} + \overline{C}_{V}' = 2 g_{V} (1 + \epsilon_{L} + \epsilon_{R})$ $\overline{C}_{A} + \overline{C}_{A}' = -2 g_{A} (1 + \epsilon_{L} - \epsilon_{R})$

 $\overline{C}_{s} + \overline{C}'_{s} = 2gs \epsilon s$ $\overline{C}_{p} + \overline{C}'_{p} = 2gp \epsilon p$ $\overline{C}_{p} + \overline{C}'_{T} = 8gr \epsilon T$ $\overline{C}_{T} + \overline{C}'_{T} = 8gr \epsilon T$

SM "V-A" structure

Exotic currents : S and T P omitted

ę

n beta decay Lagrangian

$$-\mathcal{L}_{LY} = C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \qquad \qquad \text{SM "V-A" structure} \\ + C_S \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + hc \qquad \qquad \text{Exotic currents : S and T} \\ \text{P omittee} n = 0$$

J.D Jackson, S.B Treiman, H.W Wyld Nuclear Phys 4 (1957)

n beta decay Lagrangian

$$-\mathcal{L}_{LY} = C_V \left(\bar{p} \gamma^{\mu} n + \frac{C_A}{C_V} \bar{p} \gamma^{\mu} \gamma_5 n \right) \times \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e \qquad \qquad \text{SM "V-A" structure} \\ + C_S \, \bar{p} n \times \bar{e} (1 - \gamma_5) \nu_e + \frac{1}{2} C_T \, \bar{p} \sigma^{\mu\nu} n \times \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e + hc \qquad \qquad \text{Exotic currents : S and T} \\ \text{P omittee} n = 0$$

Decay rate distribution for polarized nuclei
$$\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}$$
Ft values : V_{ud}, b
Beta spectrum shape : b
Correlation measurements : a, b, D
Interpretation of the system of

M. González-Alonso, Colloque GANIL (2019) J.D Jackson, S.B Treiman, H.W Wyld Nuclear Phys 4 (1957) 6

222 individual measurements from 23 decays : $|\mathbf{V}_{\mathrm{ud}}| = 0.97373 \pm 0.00031$

Beta spectrum shape

Beta energy spectrum for non polarized nuclei :

$$\mathbf{\zeta} \quad \frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}$$
$$dW = dW_0 \times \xi \left(1 + b \frac{m}{E_e} \right)$$

Highest sensitivity candidates due to kinematics : endpoint energy 1-4 MeV All theoretical corrections under control at 0.1% level

Experimental Challenges

- Electron backscattering
- energy loss in source
- Detector dead layer
- Set-ups : 4π, MWDC, CRES...
 Ongoing programs with ⁶He@LPC, ¹¹⁴In@Leuven, ²⁰F...

M. González-Alonso, O. Naviliat-Cuncic Phys. Rev. C 94 (2016) L. Hayen et al, Rev. Mod. Phys. 90 (2018) 10

Correlation measurements : WISArD

Decay rate for non polarized nuclei

$$\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}$$
$$dW = dW_0 \times \xi \left(1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m}{E_e} \right)$$

Correlation measurement = recoil measurement

 $a > 0 : \theta = 0^{\circ}$ favored and large recoil $a < 0 : \theta = 180^{\circ}$ favored and small recoil access to : $\tilde{a} \sim \frac{a}{1 + b < \frac{m_e}{E_e} >}$ Beta nuclear recoil < 1 keV

Nuclear recoil

Correlation measurements : WISArD

Decay rate for non polarized nuclei

 \overline{dE}

$$\frac{W(\mathbf{J})}{d\Omega_{e}d\Omega_{\nu}} = dW_{0} \times \xi \left\{ 1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e}E_{\nu}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + D \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e}E_{\nu}} \right) \right\}$$
$$\mathbf{W}$$
$$dW = dW_{0} \times \xi \left(1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e}E_{\nu}} + b \frac{m}{E_{e}} \right)$$

Correlation measurement = recoil measurement

Correlation measurements : WISArD

β-delayed p emission in ³²Ar

- $\hfill\square$ Fermi $0^+\!\rightarrow 0^+$ transition from GS to IAS
- Recoil energy ~100s eV
- Beta delayed p emission ~ 3 MeV
- □ IAS : Γ ~ 20 eV⇔T_{1/2} ~ 10⁻¹⁷ s
- ▷ p emission in flight from the recoil
- β-p coincidence measurement
 - Beta detector with detection threshold below 10 keV
 - Strong magnetic field
 - 2 symmetrical p detectors with resolution < 15 keV and high solid angle

WISARD at ISOLDE

 $\tilde{a}_F = 1.007(32)_{stat}(25)_{syst}$

3rd best result

WISARD at ISOLDE

П

Catcher foil

VBL

in B = 4 T

(WITCH magnet)

~ 35h of beamtime

⇒ 3rd best result

Proof-of-principle (2018)

 $\Delta E_{F} = 4.49(3) \, keV$

Readily available β and p detectors

~ 1700 pps of ³²Ar instead of 3000 nominal

 $\tilde{a}_F = 1.007(32)_{stat}(25)_{syst}$

Exclusion plot from D. Atanasov V. Araujo-Escalona et al. Phys. Rev. C 101 (2020)

GDR InF 2 - 4 Nov. 2022 G. Pignol M. Versteegen

 β detector: plastic

scintillator and SiPM

6 μm mylar Catcher

2 x 4 proton detectors (300 um Si Detectors)

+ FASTER DAO

WISARD at ISOLDE

Exclusion plot from D. Atanasov

2022 Upgrade

lon beam transport 98% transmission (SIMION)

p detectors

40% solid angle + 10 keV resolution + 100 nm dead layer

Beta detector

Lower detection threshold + Validation of backscattering (GEANT4)

Next data taking : spring 2023

Correlation measurements : many projects

$$\frac{dW(\mathbf{J})}{dE_e d\Omega_e d\Omega_\nu} = dW_0 \times \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + D \frac{\mathbf{p}_e \times \mathbf{p}_\nu}{E_e E_\nu} \right) \right\}$$

...

⁶He @ LPC (Paul trap) ⁸Li @ ANL (Paul trap) ⁶He @ ANL (MOT) ³²Ar @ Texas A&M (Penning) ^{38m}K @ TRIUMF (MOT) n @ aSPECT ¹¹⁴In @ ISOLDE ⁶He @ LPC (bSTILED) ⁶He @ NSCL THE MORA PROJECT

See talk by N. Goyal

>> PLAY >>

<< REWIND <<</pre>

If $d \neq 0$ the process and its time reversed version are different.

Basics of nEDM measurement

 $2\pi f = \frac{2\mu}{\hbar}B \pm \frac{2d}{\hbar}|E|$

Larmor frequency $f = 30 \text{ Hz} @ B = 1 \mu\text{T}$

If $d = 10^{-26} e \text{ cm}$ and E = 11 kV/cmone full turn in a time

To detect such a minuscule coupling

- Long interaction time
- High intensity/statistics
- Control the magnetic field

 $\frac{\pi\hbar}{dE} = 200 \text{ days}$

EDMs beyond the SM: modified Higgs couplings

Modified Higgs-fermion Yukawa coupling

$$\mathcal{L} = -\frac{y_f}{\sqrt{2}} \left(\kappa_f \bar{f} f h + i \tilde{\kappa}_f \bar{f} \gamma_5 f h \right)$$
CP

Generates EDM at 2 loops Barr, Zee, PRL 65 (1990)

Brod, Haich, Zupan, 1310.1385 Brod, Stamou, 1810.12303 Brod, Skodras, 1811.05480 ATLAS, PRL 125, 061802 (2020)

Thank you for your attention

Back up

Gorelov, A. et al, Phys. Rev. Lett. 94, 1425 (2005) Johnson, C.H. et al, Phys. Rev. 132, 1149 (1963)