

Bottomonium spectroscopy at Belle/Belle II

GDR-InF Annual Workshop 2022 <u>Pavel Oskin</u>, Roman Mizuk, Karim Trabelsi (IJCLab) (HSE) (IJCLab)

Bottomonium

Mass (MeV)

non-relativistic system (v/c~0.06)

The spectroscopy is similar to a hydrogen atom and we use the same notation.

We have two type of states:

- Below BB threshold
- Above BB threshold

The states below BB mesons threshold are well described by the potential models.

Conventional bottomonium (pure bb states) Bottomonium-like states (mixture of bb and BB) Purely exotic states

Bottomonium

Mod. Phys. Lett. A 32, №04, 1750025

Theoretical models

PhysRep, 873, 1-154

Hadronic molecule

Compound state of two hadrons. The most promising model. The bottomonium-like states can be described as a mixture of pure bottomonium and a molecular component:

Hybrid

Conventional quark-antiquark mesons with excited gluon degrees of freedom.

Compact tetraquark

States containing four constituent quarks irrespective of their clustering.

$Y(4S, 5S) = C1 \cdot |bb > + C2 \cdot |B_{(s)}^{((*)*)} B_{(s)}^{((*)*)}$

Z_b decay mode	Branching fraction
$Z_b^+(10610) \to \Upsilon(nS)/h_b(mP)\pi^+$	$14.4^{+2.5}_{-1.9}\%$
$Z_b^+(10610) \to B^+ \bar{B}^{*0} / B^+ \bar{B}^0$	$85.6^{+2.1}_{-2.9}\%$
$Z_b^+(10650) \to \Upsilon(nS)/h_b(mP)\pi^+$	$26.6^{+5.0}_{-4.7}\%$
$Z_b^+(10650) \to B^{*+}\bar{B}^{*0}$	$74^{+4}_{-6}\%$

<u>PRL, 108, 122001 (2012)</u>

Hadroquarkonium

Compact quarkonium core surrounded by an excited light-quark cloud.

SuperKEKB and Belle II

Collected data:

Bottomonium production

- Provides a unique clean environment (we have only bottomonium in the event);
- Precise measurement of the beam energy gives access to "unreconstructable" particles and decay modes;
- Allows tuning CM energy
- Only Y(nS) states can be produced with quantum numbers of the photon 1⁻⁻
- Other quantum numbers can be obtained via hadronic or radiative transitions from 1⁻⁻ states;

Bottomonium production

- Provides a unique clean environment (we have only bottomonium in the event);
- Precise measurement of the beam energy gives access to "unreconstructable" particles and decay modes;
- Allows tuning CM energy
- Only Y(nS) states can be produced with quantum numbers of the photon 1⁻⁻
- Other quantum numbers can be obtained via hadronic or radiative transitions from 1⁻⁻ states;

Discovery of the Y(10753)

Y(10753) was observed in the e+ e- \rightarrow Y(nS) π + π - (n = 1,2,3) cross section energy dependence.

- Molecular state? Does not coincide with a threshold.
- No obvious conventional bottomonium interpretation.

Bottomonium spectroscopy at Belle/Belle II / Pavel Oskin / GDR 2022

Belle II energy scan above Y(4S)

- Unique data provide an opportunity to study Y(10753) in different final states and understand its nature.
- Scan above Y(4S) has a good potential for early physics impact by Belle II even with small statistics.

Bottomonium spectroscopy at Belle/Belle II / Pavel Oskin / GDR 2022

Observation of e+e $\rightarrow \omega \chi_{bJ}(1P)$ at $\sqrt{s} = 10.745$ GeV

- Similar to Y(10753) structure named Y(4220) was observed in e+e- → J/Ψ π+π- cross section dependence by BES III (<u>PRL 118, 092001 (2017)</u>).
- BES III also observed the Y(4220) peak in γX(3872) and ωχ_{c0} final states (<u>PRL, 122, 232002 (2019)</u>, <u>PRD 99, 091103(R) (2019)</u>).
- $\omega \chi_{h1,2}$ production was found to be enhanced near Y(5S) (<u>PRL 113, 142001 (2014)</u>).
- We expect Y(10753) to decay into γ [Xb $\rightarrow \omega$ Y(1S)] and $\omega \chi_{b,l}$ final states.

Observation of e+e $\rightarrow \omega \chi_{bJ}$ (1P) at \sqrt{s} = 10.745 GeV

Bottomonium spectroscopy at Belle/Belle II / Pavel Oskin / GDR 2022

Search for e+e- $\rightarrow \eta_{b}$ (1S) ω at \sqrt{s} = 10.745 GeV

There is tetraquark interpretation (<u>Chin Phys. C 43 123102 (2019</u>)) of Y(10753) state, which predicts enhancement of the Y(10753) $\rightarrow \eta_{h}(1S)\omega$ transition:

We reconstruct only $\omega \to \pi^+\pi^-\pi^0$ and use the recoil mass to identify signal.

$$M_{
m recoil}(\omega) = \sqrt{(\sqrt{s} - E_{\omega}^*)^2 - (p_{\omega}^*)^2}$$

Assuming the cross section of this transition is the same as $\omega \chi_{b1}(1P)$, we expect to have enough sensitivity to see the signal.

Belle II MC study

Also we search for $e+e- \rightarrow \omega \chi_{b,l}(1P)$ (J = 0,1,2) which are found to be enhanced at the scan energies

 $\frac{\Gamma(\eta_b \ \omega)}{\Gamma(\Upsilon \ \pi^+\pi^-)} \sim 30$

BB decomposition with **B**-tagging

Study the energy dependence of the BB pairs production.

B-tagging can be used to measure the $B_{(s)}^{((*)*)} B_{(s)}^{((*)*)}$ cross section energy dependence.

Yet another unique way to study bottomonium at Belle / Belle II. A good probe for bottomonium models (especially the molecular model)

Improving FEI performance could affect bottomonium studies.

JHEP 06 (2021) 137

Bottomonium spectroscopy at Belle/Belle II / Pavel Oskin / GDR 2022

Belle II potential

Scan above Y(4S) gives an opportunity for a lot of unique studies:

- Y(10753) decays to different exclusive and inclusive final states. Study of its properties;
- Energy dependence of the various final state cross sections;
- BB decomposition and its cross section dependence on CM energy;

Wide range of long-term non-Y(4S) possibilities:

- Increase the above-Y(4S) scan statistics;
- Y(6S) region study with high statistics after accelerator upgrade;
- LFV / LFU / spectroscopy with Y(2S,3S) decays;

```
Golden Modes
e^+e^- \to \pi^+\pi^-\Upsilon(pS)(\to \ell^+\ell^-)
B\overline{B} decomposition
\pi^+\pi^- Dalitz
Y_b \to \omega \eta_b(1S)
Y_b \to \omega \chi_{b,I}(1P)
Silver Modes
Y_b \to \pi^+ \pi^- X (inclusive)
Y_b \to \eta X (inclusive)
Y_b \to \eta \Upsilon(1S, 2S) (\to \ell^+ \ell^-)
Y_b \to \eta' \Upsilon(1S) (\to \ell^+ \ell^-)
Y_b \to \Upsilon(1S) (inclusive)
Bronze Modes
Y_b \to \gamma X_b
Y_b \to \pi^0 \pi^0 \Upsilon(pS) (\to \ell^+ \ell^-)
Y_b \to KK(\phi)\Upsilon(pS)(\to \ell^+\ell^-)
Y_b \to \pi^0 \pi^0 X (inclusive)
Y_b \to \pi^0 X (incl. or excl.)
...
```

Summary

Belle and Belle II are unique devices for bottomonium studies:

- Tunable CM energy;
- Production in e+ e- collisions provides a low background environment;
- Precisely measured CM energy allows the studying of inclusive modes using the missing mass technique.

First results with above-Y(4S) scan data:

- Successful runs above Y(4S);
- First observation of Y(10753) $\rightarrow \chi_{b,l}(1P)\omega$;
- No evidence for X_b (bottomonium analog of X(3872)) at $\sqrt{s} = 10.745$ GeV;

Thank you for attention!

Backup

LFV search in bottomonium decays

- Y(1S) → I[±] I[±]`: Two-body vector meson CLFV process → probing the vector and tensor operators of the effective Lagrangian for NP;
- Y(1S) → γl[±] l[±]` First study of three-body radiative CLFV (complementary access to NP);

PRD 94, 074023 (2016)

PRD 91, 113013 (2015)

- Y(2S) → Y(1S)ππ is prefered over Y(1S)
 PROS
 - higher trigger efficiency (two more tracks in the event);
 - easier QED background suppression;
 - ππ recoil mass has a better resolution;

CONS

- Smaller statistics (26M vs 119M) due to $BF[Y(1S) \rightarrow Y(1S)\pi\pi] \sim 18\%;$

Background is studied on off-resonance data at 10.52 GeV;

 $\pi\pi$ recoil consistent with $\Upsilon(1S)$ mass

20

LFV search in bottomonium decays

JHEP 05 2022, 095

$e\tau$ case

Background from $\tau \rightarrow e(\mu)v(3\pi\nu)$ decays Expected peak at τ mass

Decay	ϵ (%)	$N_{ m sig}^{ m fit}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}^{\mathrm{UL}}$	PDG result
$\Upsilon(1S) \to e^\pm \mu^\mp$	32.5	-1.3 ± 3.7	3.6	$3.9 imes 10^{-7}$	()
$\Upsilon(1S) \to \mu^{\pm} \tau^{\mp}$	8.8	-1.5 ± 4.3	6.8	$2.7 imes 10^{-6}$	6.0×10^{-6}
$\Upsilon(1S) \to e^\pm \tau^\mp$	7.1	-3.5 ± 2.7	5.3	$2.7 imes 10^{-6}$	-
$\Upsilon(1S) \to \gamma e^\pm \mu^\mp$	24.6	$+0.8\pm1.5$	2.9	4.2×10^{-7}	—
$\Upsilon(1S) \to \gamma \mu^\pm \tau^\mp$	5.8	$+2.1\pm5.9$	10.0	$6.1 imes10^{-6}$	_
$\Upsilon(1S) \to \gamma e^{\pm} \tau^{\mp}$	5.0	-9.5 ± 6.3	9.1	6.5×10^{-6}	