INSTITUT DLAUE LANGEVIN

SuperSUN a high density ultra-cold neutron source for precision physics

SUPE

02/11/2022

GDR-InF annual Workshop 2022 – Estelle Chanel

© Ecliptique - Laurent Thion

Ultra cold neutrons

Definition:

- free neutron that undergo reflection under any angle of incidence
- free neutron that can be stored in material containers

Materiaux	V_f (neV)	η (capture)
DLC	~ 300	$\sim 3 \times 10^{-7}$
Béryllium	250	$5.4 imes 10^{-7}$
Inox 316	183	2×10^{-4}
Teflon	124	7×10^{-7}
Deutérium solide	107	4×10^{-8}
Graisse Fomblin	106	$6.4 imes10^{-7}$
Aluminium	54	3.7×10^{-5}
Superfluide 4He	18.8	0
Polyethylène	-9.2	/

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

- Single scattering
- Non thermal equilibrium
- **Resonance cross-section**
- Vanishing loss cross-section

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

- Single scattering
- Non thermal equilibrium ٠
- **Resonance cross-section**
- Vanishing loss cross-section

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

- Single scattering
- Non thermal equilibrium
- Resonance cross-section
- Vanishing loss cross-section

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

- Single scattering
- Non thermal equilibrium
- Resonance cross-section
- Vanishing loss cross-section

02/11/2022

02/11/2022

- P: (volumetric) production rate of UCN
- τ : losses time constant

Optimizing the production UCNs

 $\rho_{UCN} = P\tau$

- Direct primary cold neutron beam
- Transition from rectangular to cylindrical
- Guiding cold neutrons inside conversion volume

 $\rho_{UCN} = P\tau$

- **P**: (volumetric) production rate of UCN
- τ : losses time constant

S. Degenkolb, M. Kreuz, O. Zimmer, JNR 20(4) 117-122, 2018

 $\rho_{UCN} = P\tau$

- **P**: (volumetric) production rate of UCN
- τ : losses time constant

Optimizing the production UCNs

S-DH

S. Degenkolb, M. Kreuz, O. Zimmer, JNR 20(4) 117-122, 2018

 $\rho_{UCN} = P\tau$

- **P**: (volumetric) production rate of UCN
- τ : losses time constant

Optimizing the production UCNs

S-DH

85% of the 8.9 Å can be delivered to SuperSUN

S. Degenkolb, M. Kreuz, O. Zimmer, JNR 20(4) 117-122, 2018

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- $\boldsymbol{\tau}: losses time \ constant$

Optimizing the production UCNs

- Direct primary cold neutron beam
- Transition from rectangular to cylindrical
- Guiding cold neutrons inside conversion volume

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

Optimizing the losses time constant

$$\tau^{-1} = \tau_{abs}^{-1}{}_{^{3}He} + \tau_{up}^{-1} + \tau_{wall}^{-1} + \tau_{\beta}^{-1} + \cdots$$

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

Optimizing the losses time constant

$$\tau^{-1} = \tau_{abs}^{-1}{}_{^{3}He} + \tau_{up}^{-1} + \tau_{wall}^{-1} + \tau_{\beta}^{-1} + \cdots$$

• $\tau_{abs^{3}He}^{-1}$: use ultra-pure ⁴He, for which $\sigma_{a}=0$ barn

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

Optimizing the losses time constant

$$\tau^{-1} = \tau_{abs}^{-1}{}_{^{3}He} + \tau_{up}^{-1} + \tau_{wall}^{-1} + \tau_{\beta}^{-1} + \cdots$$

•
$$\tau_{abs^{3}He}^{-1}$$
: use ultra-pure ⁴He, for which $\sigma_{a}=0$ barn

•
$$\tau_{up}^{-1}$$
: at 0.6 K, $\tau_{up}^{-1} \approx \frac{(T[K])^7}{100 [s]} = (3600 \text{ s})^{-1} \ll \tau_{\beta}^{-1}$

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

Optimizing the losses time constant

$$\tau^{-1} = \tau_{abs}^{-1}{}_{^{3}He} + \tau_{up}^{-1} + \tau_{wall}^{-1} + \tau_{\beta}^{-1} + \cdots$$

•
$$\tau_{abs^{3}He}^{-1}$$
: use ultra-pure ⁴He, for which $\sigma_{a}=0$ barn

•
$$\tau_{up}^{-1}$$
: at 0.6 K, $\tau_{up}^{-1} \approx \frac{(T[K])^7}{100 [s]} = (3600 \text{ s})^{-1} \ll \tau_{\beta}^{-1}$

• τ_{wall}^{-1} : long storage time material (Cytop) and magnetic trap (Octupole)

SuperSUN phase II

 $\rho_{UCN} = P\tau$

P: (volumetric) production rate of UCN τ : losses time constant

PHYSICAL REVIEW C 92, 015501 (2015)

02/11/2022

SuperSUN phase II

 $\rho_{UCN} = P\tau$

- P: (volumetric) production rate of UCN
- τ : losses time constant

Storage: 2.1T gradient field Adiabaticity: 50 mT field

PHYSICAL REVIEW C 92, 015501 (2015)

PanEDM: a neutron EDM experiment

Expected characteristics Peak spectrum: 80 neV Internal saturated density extrapolated from SUN2: 330 UCN/cm³

SuperSUN

PanEDM MSR

PanEDM clean room

GDR-InF annual Workshop 2022 – Estelle Chanel

SUPER

Neutron electric dipole moment

Probing BSM and strong sector of SM

- H: Hamiltonian
- μ_n : magnetic dipole moment
- *B*: magnetic field
- d_n : electric dipole moment
- *E*: electric field
- σ : neutron spin

- S_{d_n} : statistical sensitivity
- *T*: interaction time
- \hbar : reduced Plank constant
- α : visibility
- *N*: number of UCN counted

Measure the precession frequency in a known electric and magnetic field

Sensitivity equation

 $\frac{1}{2 \alpha T E \sqrt{N}}$

PanEDM: a neutron EDM experiment

PanEDM Magnetic and RF Shielding

1: UCN cells

SUPER

- 2: vacuum chamber
- 3: HV insertion

5: inner shields (3) 6: outer MSR (2+1) 7: MSR door

Statistical sensitivity:

SuperSUN	Phase I	-		
Saturated source		-		
density [cm ⁻³]	330	N .		
Diluted density [cm ⁻³]	63	extraction		
Density in cells [cm ⁻³]	3.9	105565		
PanEDM Sensitivity $[1\sigma, e \text{ cm}]$				
Per run	5.5×10^{-25}			
Per day	3.8×10^{-26}			
Per 100 days	3.8×10^{-27}	-		

More details, including phase II:

EPJ Web of Conferences **219**, 02006 (2019) https://doi.org/10.1051/epjconf/201921902006

ACKNOWLEDGEMENTS

All what will be shown would not have been possible without huge engagement of people:

THANK YOU!!!

SuperSUN: E. Chanel, S. Baudoin, M.H. Baurand, N. Belkhier, E. Bourgeat-Lami, S. Degenkolb, M. van der Grinten "M. Jentschel, V. Joyet, M. Kreuz, E. Lelièvre-Berna, J. Lucas, A. Quirk, M. Thomas, X. Tonon, O. Zimmer,…

PanEDM: D. Beck, T. Chupp, R. Combe-Colas, S. Degenkolb, P. Fierlinger, H. Filter, L. Hopf, F. Kuchler, V. Popescu, M. Rosner, P. Rößner, M. van der Grinten, M. Wojke, D. Wurm ...

Support: D. Berruyier, J. Bonnevaux, P. Cogo, R. Gandelli, Y. Gibert, M. Kreuz, P. Lachaume, T. Mazili, C. Monon, C. Mounier, A. Robert, M. Thomas...

...and many, many others.

02/11/2022

02/11/2022

GDR-InF annual Workshop 2022 – Estelle Chanel

INSTITUT LAUE LANGEVIN

THE EUROPEAN NEUTRON SOURCE

27

H523 (as simulated using McStas)

Work and slide by S. Degenkolb

02/11/2022

02/11/2022

SUPER

GDR-InF annual Workshop 2022 – Estelle Chanel

NEUTRONS FOR SOCIETY

More components

Beam stop

02/11/2022

GDR-InF annual Workshop 2022 – Estelle Chanel

Beryllium window

UCN extraction

Thermalizing copper Black velvet Ge window with dDLC

Slide adapted from M. Jentschel

Publication Cytop

Eur. Phys. J. A (2022) 58:141 https://doi.org/10.1140/epja/s10050-022-00791-x The European Physical Journal A

Special Article - New Tools and Techniques

Ultracold neutron storage in a bottle coated with the fluoropolymer CYTOP

Thomas Neulinger^{1,2,a}, Douglas Beck², Euan Connolly^{1,3}, Skyler Degenkolb^{1,4}, Peter Fierlinger⁵, Hanno Filter^{1,5}, Jürgen Hingerl^{1,5}, Pontus Nordin¹, Thomas Saerbeck¹, Oliver Zimmer¹

¹ Institut Laue-Langevin, Grenoble 38042, France

- ² University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- ³ University of Bristol, Bristol BS8 1TL, UK
- ⁴ Universität Heidelberg, Heidelberg 69120, Germany
- ⁵ Technische Universität München, Garching 80805, Germany

Received: 14 March 2022 / Accepted: 11 July 2022 / Published online: 30 July 2022 © The Author(s) 2022 Communicated by Alexandre Obertelli

Abstract The fluoropolymer CYTOP was investigated in order to evaluate its suitability as a coating material for ultracold neutron (UCN) storage vessels. Using neutron reflectometry on CYTOP-coated silicon wafers, its neutron optical potential was measured to be 115.2(2) neV. UCN storage measurements were carried out in a 3.81 CYTOP-coated aluminum bottle, in which the storage time constant was found to increase from 311(9) s at room temperature to 564(7) s slightly above 10 K. By combining experimental storage data with simulations of the UCN source, the neutron loss factor of CYTOP is estimated to decrease from $1.1(1) \times 10^{-4}$ to $2.7(2) \times 10^{-5}$ at these temperatures, respectively. These results are of particular importance to the next-generation superthermal UCN source SuperSUN, currently under construction at the Institut Laue-Langevin, for which CYTOP is a possible top-surface coating in the UCN production volume.

SuperSUN cryogenic test

02/11/2022

PanEDM phase I

High voltages	
field	20 kV/cm
Magnetic field	
shielding factor at 1 mHz	6×10^{6}
magnetometers resolution	few-fT
$ \mathbf{B}_0 $	1.3 μT
Statistics	
polarization	0.8
double chambers with	3.9 UCN/cm^3
free precession time	250 s
Expected sensitivity (100 days)	$3.8 imes 10^{-27}$

EPJ Web of Conferences **219**, 02006 (2019) https://doi.org/10.1051/epjconf/201921902006

