



Universität Zürich<sup>uz</sup><sup>H</sup>

# Flavor physics at high-p<sub>T</sub>

Felix Wilsch

Universität Zürich

**Based on:** 

L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [2207.10714] [2207.10756] J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, FW [2210.13422]

GDR-InF Annual Workshop 2022 – Lyon

November 3, 2022

### Outline

- Complementarity of:
  - Low-energy data (precision frontier)
  - High- $p_T$  data (energy frontier)
- Construction of full flavor likelihood for NP in Drell-Yan
  - Implemented in Mathematica code: HighPT
  - Constraints on SMEFT and leptoquark models
- Constraining the charged-current B-anomalies with high- $p_T$  data



https://highpt.github.io/

- Most SMEFT parameters are due to flavor:
  - d = 6: 59 electroweak structures  $\leftrightarrow$  2499 parameters
  - How to constrain all these parameters?

- Most SMEFT parameters are due to flavor:
  - d = 6: 59 electroweak structures  $\leftrightarrow$  2499 parameters
  - How to constrain all these parameters?
- Hints for NP: indication of LFUV in semileptonic B decays



see e.g.: Crivellin, Muller, Ota [1703.09226], Buttazzo et al [1706.07808], Marzocca [1803.10972], Becirevic et al [1808.08179], ...

- Most SMEFT parameters are due to flavor:
  - d = 6: 59 electroweak structures  $\leftrightarrow$  2499 parameters
  - How to constrain all these parameters?
- Hints for NP: indication of LFUV in semileptonic B decays



see e.g.: Crivellin, Muller, Ota [1703.09226], Buttazzo et al [1706.07808], Marzocca [1803.10972], Becirevic et al [1808.08179], ...

• Probing semileptonic operators at different scales:



- Most SMEFT parameters are due to flavor:
  - d = 6: 59 electroweak structures  $\leftrightarrow$  2499 parameters
  - How to constrain all these parameters?
- Hints for NP: indication of LFUV in semileptonic B decays



see e.g.: Crivellin, Muller, Ota [1703.09226], Buttazzo et al [1706.07808], Marzocca [1803.10972], Becirevic et al [1808.08179], ...

• Probing semileptonic operators at different scales:



- Most SMEFT parameters are due to flavor:
  - d = 6: 59 electroweak structures  $\leftrightarrow$  2499 parameters
  - How to constrain all these parameters?
- Hints for NP: indication of LFUV in semileptonic B decays



see e.g.: Crivellin, Muller, Ota [1703.09226], Buttazzo et al [1706.07808], Marzocca [1803.10972], Becirevic et al [1808.08179], ...

• Probing semileptonic operators at different scales:  $M = \frac{Q_{ij}}{Q_{ij}} = \frac{M}{Q_{ij}} = \frac{Q_{ij}}{Q_{ij}} = \frac{Q_{ij}}{$ 

#### Flavor in Drell-Yan

Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha}\ell_{\beta}) = L_{ij} \otimes \left[\hat{\sigma}\right]_{ij}^{\alpha\beta}$$

-  $L_{ij}$  parton luminosities / PDFs  $\rightarrow$  all quark flavors contribute (except for top)

$$\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[ f_{\bar{q}_i}(x,\mu) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$$

-  $[\hat{\sigma}]_{ij}^{\alpha\beta}$  partonic cross section  $\rightarrow$  energy enhanced in EFT  $[\hat{\sigma}]_{ij}^{\alpha\beta}$ 

- $\left[\hat{\sigma}\right]_{ij}^{\alpha\beta} \propto \frac{\hat{s}}{\Lambda^4} \left|C\right|^2$
- $\tau$ -tails particularly relevant for models with large 3rd generation couplings Faroughy, Greljo, Kamenik [1609.07138]



Angelescu, Faroughy, Sumensari [2002.05684]



# Drell-Yan tails

**Computing NP contributions to Drell-Yan tails** 

#### **Cross section**

- Form factor decomposition of the amplitude
- Most general parametrization of tree-level effects invariant under  $SU(3)_c \times U(1)_e$

$$\begin{split} [\mathcal{A}]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}' \rightarrow \bar{\ell}_{\alpha}\ell_{\beta}'\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Scalar} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Vector} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Dipole} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Dipole} \end{split}$$

6

#### **Cross section**

- Form factor decomposition of the amplitude
- Most general parametrization of tree-level effects invariant under  $SU(3)_c \times U(1)_e$
- Captures local and non-local effects

$$\mathcal{F}_{I}(\hat{s},\hat{t}) = \mathcal{F}_{I,\operatorname{Reg}}(\hat{s},\hat{t}) + \mathcal{F}_{I,\operatorname{Poles}}(\hat{s},\hat{t})$$

SMEFT contact interactions (B)SM mediators

$$\begin{split} [\mathcal{A}]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}' \to \bar{\ell}_{\alpha}\ell_{\beta}'\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Scalar} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Vector} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Dipole} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} & \text{Dipole} \end{split}$$

Incorporates EFT and explicit BSM mediators

#### **Cross section**

- Form factor decomposition of the amplitude
- Most general parametrization of tree-level effects invariant under  $SU(3)_c \times U(1)_e$
- Captures local and non-local effects

$$\mathcal{F}_{I}(\hat{s},\hat{t}) = \mathcal{F}_{I,\operatorname{Reg}}(\hat{s},\hat{t}) + \mathcal{F}_{I,\operatorname{Poles}}(\hat{s},\hat{t})$$

SMEFT contact interactions (B)SM mediators

$$\begin{split} [\mathcal{A}]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}' \to \bar{\ell}_{\alpha}\ell_{\beta}'\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &\text{Dipole} \end{split}$$

Incorporates EFT and explicit BSM mediators

SMEFT: 
$$\sigma \sim \left|A_{\mathrm{SM}}\right|^2 + \frac{1}{\Lambda^2} 2\operatorname{Re}\left(A^{(6)}A_{\mathrm{SM}}^*\right) + \frac{1}{\Lambda^4}\left(\left|A^{(6)}\right|^2 + 2\operatorname{Re}\left(A^{(8)}A_{\mathrm{SM}}^*\right)\right) + \mathcal{O}(\Lambda^{-6})$$

#### Hadronic cross-section (at tree-level)

$$\sigma_{\mathcal{B}}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{\mathrm{d}\hat{t}}{v^{2}} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_{I}^{XY,qq}\right]_{ij}^{\alpha\beta} \left[\mathcal{F}_{J}^{XY,qq}\right]_{ij}^{\alpha\beta*}$$

**Felix Wilsch** 

#### **Experimental observables**

#### • High- $p_T$ tail distributions:

- Particle-level distribution  $\frac{d\sigma}{dx}$  computed from final state particles  $e, \mu, \tau, \nu$
- Detector-level distribution  $\frac{d\sigma}{dx_{obs}}$  measured by experiments from reconstructed objects (isolated leptons, tagged jets, missing energy, ...)

• Relate 
$$\frac{d\sigma}{dx}$$
 to  $\frac{d\sigma}{dx_{obs}}$  using MC simulations (MadGraph+Pythia+Delphes)

$$\textbf{measured} \longrightarrow \sigma_q(x_{\text{obs}}) = \sum_{p=1}^M K_{pq} \sigma_p(x) \textbf{computed}$$

object reconstruction efficiencies, detector response, phase-space mismatch

• Recasts of available experimental searches:

HighPT 
$$\frac{(N_{NP} + N_{SM} - N_{data})^2}{\sigma^2}$$
 provided by experiment

# HighPT

- Observable computation automated in Mathematica code HighPT L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [2207.10756]
  - Derive exclusion bounds on BSM models with generic flavor structure
- Implemented models:
  - SMEFT (up to d = 8)
  - UV mediators (leptoquarks)
- Available searches (full LHC run-II data sets):



https://highpt.github.io/

| Process Experiment Lumino  |                | Luminosity           | $x_{ m obs}$                                                                           | x            |     |
|----------------------------|----------------|----------------------|----------------------------------------------------------------------------------------|--------------|-----|
| $pp \rightarrow \tau \tau$ | ATLAS          | $139{ m fb}^{-1}$    | $m_T^{ m tot}(	au_h^1,	au_h^2, ot\!\!\!\!E_T)$                                         | $m_{	au	au}$ |     |
| $pp  ightarrow \mu \mu$    | CMS            | $140{\rm fb}^{-1}$   | $m_{\mu\mu}$                                                                           | $m_{\mu\mu}$ |     |
| $pp \rightarrow ee$        | $\mathbf{CMS}$ | $137{ m fb}^{-1}$    | $m_{ee}$                                                                               | $m_{ee}$     |     |
| $pp \rightarrow \tau \nu$  | ATLAS          | $139{ m fb}^{-1}$    | $m_T(	au_h,  ot\!\!\!/ E_T)$                                                           | $p_T(	au)$   | [AT |
| $pp  ightarrow \mu  u$     | ATLAS          | $139{ m fb}^{-1}$    | $m_T(\mu,,  ot \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $p_T(\mu)$   |     |
| $pp \to e\nu$              | ATLAS          | $139{ m fb}^{-1}$    | $m_T(e, E_T)$                                                                          | $p_T(e)$     |     |
| $pp  ightarrow 	au\mu$     | CMS            | $137.1{\rm fb}^{-1}$ | $m^{ m col}_{	au_h\mu}$                                                                | $m_{	au\mu}$ |     |
| $pp \to \tau e$            | CMS            | $137.1{\rm fb}^{-1}$ | $m^{ m col}_{	au_h e}$                                                                 | $m_{	au e}$  |     |
| $pp  ightarrow \mu e$      | CMS            | $137.1{\rm fb}^{-1}$ | $m_{\mu e}$                                                                            | $m_{\mu e}$  |     |
|                            |                |                      |                                                                                        |              |     |

[2002.12223] [2103.02708] [2103.02708] [2103.02708] [1906.05609] [1906.05609] [2205.06709] [2205.06709] [2205.06709]





# High-p<sub>T</sub> constraints

**Exclusion limits for several NP scenarios** 

### Single coupling constraints

- SMEFT Wilson coefficient
- Example:  $Q_{lq}^{(3)} = (\bar{\ell}_{\alpha} \gamma^{\mu} \tau^{I} \ell_{\beta})(\bar{q}_{i} \gamma_{\mu} \tau^{I} q_{j})$ 
  - Cross section to  $\mathcal{O}(\Lambda^{-4})$  with  $\Lambda = 1 \,\mathrm{TeV}$
  - Contributions from  $pp \to \ell \ell$  and  $pp \to \ell \nu$



L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [2207.10714]

### Single coupling constraints

- SMEFT Wilson coefficient
- Example:  $Q_{lq}^{(3)} = (\bar{\ell}_{\alpha} \gamma^{\mu} \tau^{I} \ell_{\beta})(\bar{q}_{i} \gamma_{\mu} \tau^{I} q_{j})$ 
  - Cross section to  $\mathcal{O}(\Lambda^{-4})$  with  $\Lambda = 1 \,\mathrm{TeV}$
  - Contributions from  $pp \to \ell \ell$  and  $pp \to \ell \nu$

- BSM mediator
- Example:  $U_1$  leptoquark

- Mass 
$$m_{\rm LQ} = 2 \,{\rm TeV}$$



L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [2207.10714]

#### $U_1$ Leptoquark model

$$\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \,\bar{q}_i \psi_1 l_\alpha + [x_1^R]^{i\alpha} \,\bar{d}_i \psi_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \,\bar{u}_i \psi_1 \nu_\alpha + \text{h.c.} \xrightarrow{\mathsf{SMEFT}} [C_{lq}^{(1)}]_{\alpha\beta ij} = [C_{lq}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2} [x_1^L]_{i\beta} [x_1^L]_{j\alpha}^*$$

- $U_1$  model is a possible explanation of *B*-anomalies  $\rightarrow$  dominant 3rd generation couplings
- Consider couplings to  $q_{3,2}^L$  and  $\ell_3^L$ :  $b\bar{b} \to \tau^+ \tau^-$ ,  $b\bar{s} \to \tau^+ \tau^-$ ,  $b\bar{c} \to \tau^- \bar{\nu} \dots$  (+ c.c.)

### $U_1$ Leptoquark model

$$\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \,\bar{q}_i \psi_1 l_\alpha + [x_1^R]^{i\alpha} \,\bar{d}_i \psi_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \,\bar{u}_i \psi_1 \nu_\alpha + \text{h.c.} \xrightarrow{\mathsf{SMEFT}} [C_{lq}^{(1)}]_{\alpha\beta ij} = [C_{lq}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2} [x_1^L]_{i\beta} [x_1^L]_{j\alpha}^*$$

- $U_1$  model is a possible explanation of *B*-anomalies  $\rightarrow$  dominant 3rd generation couplings
- Consider couplings to  $q_{3,2}^L$  and  $\ell_3^L$ :  $b\bar{b} \to \tau^+ \tau^-$ ,  $b\bar{s} \to \tau^+ \tau^-$ ,  $b\bar{c} \to \tau^- \bar{\nu} \dots$  (+ c.c.)



#### **SMEFT** fit

#### Flavor physics at high- $p_T$ | GDR-InF annual workshop

#### $U_1$ Leptoquark model

$$\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \,\bar{q}_i \psi_1 l_\alpha + [x_1^R]^{i\alpha} \,\bar{d}_i \psi_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \,\bar{u}_i \psi_1 \nu_\alpha + \text{h.c.} \xrightarrow{\mathsf{SMEFT}} [C_{lq}^{(1)}]_{\alpha\beta ij} = [C_{lq}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2} [x_1^L]_{i\beta} [x_1^L]_{j\alpha}^*$$

- $U_1$  model is a possible explanation of *B*-anomalies  $\rightarrow$  dominant 3rd generation couplings
- Consider couplings to  $q_{3,2}^L$  and  $\ell_3^L$ :  $b\bar{b} \to \tau^+ \tau^-$ ,  $b\bar{s} \to \tau^+ \tau^-$ ,  $b\bar{c} \to \tau^- \bar{\nu} \dots$  (+ c.c.)



**Felix Wilsch** 

#### Flavor physics at high- $p_T$ | GDR-InF annual workshop

• Recent update of LFU ratios  $R_{D^{(*)}}$  by LHCb:



**HFLAV** (preliminary)

#### World average:

- $R_D = 0.358 \pm 0.025 \pm 0.012$
- $R_{D^*} = 0.285 \pm 0.010 \pm 0.008$ SM prediction:

- $R_D = 0.298 \pm 0.004$
- $R_{D^*} = 0.254 \pm 0.005$

• Recent update of LFU ratios  $R_{D^{(*)}}$  by LHCb:



**HFLAV** (preliminary)

#### World average:

- $R_D = 0.358 \pm 0.025 \pm 0.012$
- $R_{D^*} = 0.285 \pm 0.010 \pm 0.008$ SM prediction:
- $R_D = 0.298 \pm 0.004$
- $R_{D^*} = 0.254 \pm 0.005$
- Hypothesis:  $U_1$  LQ field dominantly coupled to 3rd generation

$$J_U^{\mu} = \frac{g_U}{\sqrt{2}} \left[ \bar{q}_L^3 \gamma^{\mu} \ell_L^3 + \beta_R \bar{d}_R^3 \gamma^{\mu} e_R^3 + \epsilon_q \bar{q}_L^2 \gamma^{\mu} \ell_L^3 \right]$$

• Effective Lagrangian for  $b \rightarrow c$  transitions:

$$\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[ \left( 1 + C_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2C_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right]$$



• Hypothesis:  $U_1$  LQ field dominantly coupled to 3rd generation

$$J_U^{\mu} = \frac{g_U}{\sqrt{2}} \left[ \bar{q}_L^3 \gamma^{\mu} \ell_L^3 + \beta_R \bar{d}_R^3 \gamma^{\mu} e_R^3 + \epsilon_q \bar{q}_L^2 \gamma^{\mu} \ell_L^3 \right]$$

• Effective Lagrangian for  $b \rightarrow c$  transitions:

$$\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[ \left( 1 + C_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2C_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right]$$



• Hypothesis:  $U_1$  LQ field dominantly coupled to 3rd generation

$$J_U^{\mu} = \frac{g_U}{\sqrt{2}} \left[ \bar{q}_L^3 \gamma^{\mu} \ell_L^3 + \beta_R \bar{d}_R^3 \gamma^{\mu} e_R^3 + \epsilon_q \bar{q}_L^2 \gamma^{\mu} \ell_L^3 \right]$$

• Effective Lagrangian for  $b \rightarrow c$  transitions:

$$\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[ \left( 1 + C_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2C_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right]$$

### High- $p_T$ constraints

- Relevant processes at high- $p_T$ :  $pp \rightarrow \tau \tau$  in particular
  - Effective scale:  $\Lambda_U = \sqrt{2}M_U/g_U$
- Searches for  $pp \rightarrow \tau \tau$ 
  - ATLAS (no excess) [2002.12223] [implemented in HighPT]
  - CMS (  $\sim 3\sigma$  excess) [2208.02717]
- Exploit *b*-tagging:
  - Particularly relevant for  $b\bar{b} \rightarrow \tau^- \tau^+$
  - Gluon splitting  $g \to b\bar{b}$
- Rescaled using NLO corrections computed in U. Haisch, L. Schnell, S. Schulte, [2209.12780]
- A specific NP model would have many more collider signatures see e.g. Baker, Fuentes-Martin, Isidori, König [1901.10480]

M. Pesut, B.A. Stefanek, FW [2210.13422]



 $b\bar{b} \rightarrow \tau^+ \tau^-$ 

## High- $p_T$ vs. $R_D$ and $R_{D^*}$

- Effective Lagrangian for  $b \to c$  transitions:  $\mathscr{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[ \left( 1 + C_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2C_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right]$
- Match  $C^c_{LL(LR)}$  to the our  $U_1$  model
- Details of the fit:
  - $C_{LL}^c \to 0$  corresponds to  $|\beta_R| \to \infty$
  - More model dependence
    - Depends on 2nd gen. coupling  $\epsilon_q$
    - Small  $\epsilon_q$  requires lower scale  $\Lambda_U$
- Currently good compatibility of constraints
- Improvements expected by HL-LHC
- CMS excess would indicate scenario with large  $\beta_R$



#### Conclusions

- High- $p_T$  provides information complementary to low-energy experiments
  - Improvements expected with upcoming Run-3 and HL-LHC
  - Will help to scrutinize the origin of the B-anomalies
- Construction of full flavor likelihood for high- $p_T$  Drell-Yan processes at LHC
  - For the SMEFT explicit heavy BSM mediators
- Future features for the **HighPT** code:
  - Addition of further observables
     (*b*-tagging, FB-asymmetries, other collider processes, low-energy, ...)
  - Assessment of PDF uncertainties & NLO corrections

#### Thank you for your attention !!!





 $pp \rightarrow \tau \tau$ 

CMS di-tau search

**ATLAS di-tau search** 



### $U_1$ search by CMS



#### CMS exclusion limits on the $U_1$ LQ

**Felix Wilsch** 

#### **Bounds on NP scenarios**

#### **Example:**

LQ models for  $R_{D^{(*)}}$ 

- Consider flavor indices:  $\alpha\beta ij \in \{3333, 3323\}$
- Relevant experimental sear
  - $pp \rightarrow \tau \tau$
  - $pp \rightarrow \tau \nu$
- Perform fits for:
  - Wilson coefficients
  - NP couplings

 $\begin{aligned} \mathcal{L}_{S_{1}} &= [y_{1}^{L}]^{i\alpha} \, S_{1} \bar{q}_{i}^{c} \epsilon l_{\alpha} + [y_{1}^{R}]^{i\alpha} \, S_{1} \bar{u}_{i}^{c} e_{\alpha} + [\bar{y}_{1}^{R}]^{i\alpha} \, S_{1} \bar{d}_{i}^{c} \nu_{\alpha} + \text{h.c.} \\ \mathcal{L}_{R_{2}} &= -[y_{2}^{L}]^{i\alpha} \, \bar{u}_{i} R_{2} \epsilon l_{\alpha} + [y_{2}^{R}]^{i\alpha} \, \bar{q}_{i} e_{\alpha} R_{2} + \text{h.c.} \\ \mathcal{L}_{U_{1}} &= [x_{1}^{L}]^{i\alpha} \, \bar{q}_{i} \psi_{1} l_{\alpha} + [x_{1}^{R}]^{i\alpha} \, \bar{d}_{i} \psi_{1} e_{\alpha} + [\bar{x}_{1}^{R}]^{i\alpha} \, \bar{u}_{i} \psi_{1} \nu_{\alpha} + \text{h.c.} \end{aligned}$ 

#### SMEFT matching @ tree-level

| Field                                                | $S_1$                                              | $R_2$                                              | $U_1$                                              |  |
|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--|
| Quantum Numbers                                      | $({f ar 3},{f 1},1/3)$                             | $({f 3},{f 2},7/6)$                                | $({f 3},{f 1},2/3)$                                |  |
| $\left[\mathcal{C}_{ledq} ight]_{lphaeta ij}$        | —                                                  | —                                                  | $2[x_1^L]^{ilpha^*}[x_1^R]^{jeta}$                 |  |
| $\left[ {{\cal C}}_{lequ}^{(1)}  ight]_{lphaeta ij}$ | $rac{1}{2}[y_1^L]^{ilpha^*}[y_1^R]^{jeta}$        | $-\tfrac{1}{2}[y_2^R]^{i\beta}[y_2^L]^{j\alpha^*}$ | —                                                  |  |
| $\left[ {{\cal C}}_{lequ}^{(3)}  ight]_{lphaeta ij}$ | $-\tfrac{1}{8}[y_1^L]^{i\alpha^*}[y_1^R]^{j\beta}$ | $-\tfrac{1}{8}[y_2^R]^{i\beta}[y_2^L]^{j\alpha^*}$ | _                                                  |  |
| $\left[ \mathcal{C}_{eu} ight] _{lphaeta ij}$        | $rac{1}{2}[y_1^R]^{jeta}[y_1^R]^{ilpha^*}$        | _                                                  | _                                                  |  |
| $[\mathcal{C}_{ed}]_{lphaeta ij}$                    | —                                                  | —                                                  | $-[x_1^R]^{i\beta}[x_1^R]^{j\alpha^*}$             |  |
| $[{\cal C}_{\ell u}]_{lphaeta ij}$                   | _                                                  | $-rac{1}{2}[y_2^L]^{ieta}[y_2^L]^{jlpha^*}$       | _                                                  |  |
| $\left[ \mathcal{C}_{qe}  ight]_{ijlphaeta}$         | —                                                  | $-\tfrac{1}{2}[y_2^R]^{i\beta}[y_2^R]^{j\alpha^*}$ | —                                                  |  |
| $\left[\mathcal{C}_{lq}^{(1)} ight]_{lphaeta ij}$    | $rac{1}{4}[y_1^L]^{ilpha^*}[y_1^L]^{jeta}$        | _                                                  | $-\tfrac{1}{2}[x_1^L]^{i\beta}[x_1^L]^{j\alpha^*}$ |  |
| $\left[ \mathcal{C}_{lq}^{(3)} ight] _{lphaeta ij}$  | $-\tfrac{1}{4}[y_1^L]^{i\alpha^*}[y_1^L]^{j\beta}$ | _                                                  | $-rac{1}{2}[x_1^L]^{ieta}[x_1^L]^{jlpha^*}$       |  |

### $R_2$ Leptoquark (3, 2, 7/6)

 $\mathcal{L}_{R_2} = -[y_2^L]_{i\alpha} \,\bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]_{i\alpha} \,\bar{q}_i e_\alpha R_2 + \text{h.c.}$ 

$$\rightarrow \quad [C_{lequ}^{(1)}]_{\alpha\beta ij} = 4[C_{lequ}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2}[y_2^R]_{i\beta}[y_2^L]_{j\alpha}^*$$

#### **SMEFT** fit

LQ mediator fit



L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [2207.10714]

## $S_1$ Leptoquark ( $\bar{3}, 1, 1/3$ )

 $\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]_{i\alpha} S_1 \bar{d}_i^c N_\alpha + \text{h.c.} \rightarrow [C_{lequ}^{(1)}]_{\alpha\beta ij} = -4[C_{lequ}^{(3)}]_{\alpha\beta ij} = \frac{1}{2} [y_1^L]_{i\alpha}^* [y_1^R]_{j\beta}$ 

#### **SMEFT** fit

LQ mediator fit



L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [2207.10714]

### LFV in the $U_1$ model

- $U_1 \sim (3, 1, 2/3)$  leptoquark model:  $\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \bar{q}_i \mathcal{V}_1 l_{\alpha} + [x_1^R]^{i\alpha} \bar{d}_i \mathcal{V}_1 e_{\alpha} + [\bar{x}_1^R]^{i\alpha} \bar{u}_i \mathcal{V}_1 \nu_{\alpha} + h.c.$
- LFV requires 2 couplings turned on
  - LFV can be constrained by  $pp \to \ell \, \overline{\ell} \,$  and  $\, pp \to \ell \, \overline{\ell'}$
- Example: consider only 3rd generation quarks



### **CKM rotations**

• Effects of up- / down-alignment assumption for NP constraints



**Felix Wilsch** 

Flavor physics at high- $p_T$  | GDR-InF annual workshop

# $\chi^2$ likelihood vs CL<sub>s</sub>

•  $\chi^2$  likelihood: combine experimental bins with low event count in the tails to validate the Gaussian approximation (1 $\sigma$ , 2 $\sigma$ , 3 $\sigma$  contours)

(10, 20, 30 contours) p-values of signal and background Read '00 Compare to  $CL_s = \frac{p_s}{1-p_0}$  method ( $1\sigma$ ,  $2\sigma$ ,  $3\sigma$  dashed contours)

• CL<sub>s</sub> tends to be more conservative, but overall good agreement with  $\chi^2$ 



#### **EFT validity**

- High- $p_T$  tails: events with highest invariant mass are around  $\sqrt{\hat{s}} \lesssim 4 \,\mathrm{TeV}$
- → Validity of EFT approach for relatively light NP mediators (~*few* TeV) ???
  - Option 1: drop highest bins of all searches
  - Option 2: include higher dimensional operators
    - How sizable is the effect of d = 8 operators compared to d = 6?
  - Option 3: simulate with explicit NP mediator rather than EFT
    - How does the explicit model compare to d = 6, 8 EFT operators?
- Analyse these effects with **HighPT** for some specific models [w.i.p.]

#### see e.g.:

Dawson, Fontes, Homiller, Sullivan [2205.01561] Boughezal, Mereghetti, Petriello [2106.05337] Alioli, Boughezal, Mereghetti, Petriello [2003.11615] Kim, Martin [2203.11976]

#### Jack-knife plots



**Felix Wilsch** 

Flavor physics at high- $p_T$  | GDR-InF annual workshop

### **Clipped limits**

- Constraints obtained with sliding upper cut  $M_{\rm cut}$  for experimental observables
- Allows assessment of EFT validity range



**Felix Wilsch** 

Flavor physics at high- $p_T$  | GDR-InF annual workshop

### **EFT validity**

 $\Lambda = 4 \text{ TeV}$  $\Lambda = 6 \text{ TeV}$  $\Lambda = 2 \text{ TeV}$  $(\times 5)$  $(\times 5)$  $(\times 5)$ uuuuuu $> 4\pi v^2 / \Lambda^2$ ud $(\times 5)$ ud $(\times 5)$ ud $(\times 5)$ Constraints on form dd $(\times 5)$ dd $(\times 5)$ dd $(\times 5)$ factors ~  $C_{la}^{(1,3)}$ : SSSSSScsCScsccccccSingle parameter 65 bbbbbblimits  $\sim d = 6$ -0.06 - 0.04 - 0.020. 0.02 0.04 0.06-0.06 - 0.04 - 0.020. 0.02 0.04 $0.06 \quad -0.06 \quad -0.04 \quad -0.02$ 0. 0.020.040.06  $\left[\mathcal{F}_{V(0,0)}^{LL,\,qq\prime}\right]_{22ij}$  $\left[\mathcal{F}_{V(0,0)}^{LL,\,qq'}\right]_{22ij}$  $\left[\mathcal{F}_{V(0,0)}^{LL,\,qq\prime}\right]_{22ij}$ Marginalizing over d = 8 operators  $\Lambda = 6 \text{ TeV}$  $\Lambda = 2 \text{ TeV}$  $\Lambda = 4 \text{ TeV}$ uuuuuu $\sim C^{(k)}_{l^2q^2D^2}$ udududddddddOperators of d = 6SSSSSSand d = 8 assuming CSCScsccccCCZ' scenario bbbbbb-0.06 - 0.04 - 0.020. 0.02 0.04 0.06 -0.06 - 0.04 - 0.020. 0.02 0.040.06-0.06 - 0.04 - 0.020. 0.020.040.06  $\left[\mathcal{F}_{V\,(0,0)}^{LL,\,qq\prime}\right]_{33ij}$  $\left[\mathcal{F}_{V\,(0,0)}^{\,LL,\,qq\prime}\right]_{33ij}$  $\left[\mathcal{F}_{V\,(0,0)}^{LL,\,qq\prime}\right]_{33ij}$ 

L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [2207.10714]

#### **Drell-Yan form-factors**

• Drell-Yan processes:

 $\bar{u}_i u_j \to \ell_\alpha^- \ell_\beta^+, \quad \bar{d}_i d_j \to \ell_\alpha^- \ell_\beta^+, \quad \bar{u}_i d_j \to \ell_\alpha^- \bar{\nu}_\beta, \quad \bar{d}_i u_j \to \ell_\alpha^+ \nu_\beta$ 

• Amplitude form-factor decomposition:

$$\begin{split} \mathcal{A}]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q'_{j} \rightarrow \bar{\ell}_{\alpha}\ell'_{\beta}\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y}\left\{\left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\mathbb{P}_{Y}q'_{j}\right)\left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Scalar} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q'_{j}\right)\left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Vector} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right)\delta^{XY}\left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Tensor} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right)\frac{ik_{\nu}}{v}\left[\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Dipole} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q'_{j}\right)\frac{ik^{\nu}}{v}\left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta}\right\} \quad \text{Dipole} \end{split}$$

- General parametrization of tree-level effects invariant under  $SU(3)_c \times U(1)_e$
- Captures local and non-local effects

ŀ

 $\ell_{\alpha}$ 

#### Local and non-local contributions

Split form-factors into a regular and a singular piece

$$\mathcal{F}_{I}(\hat{s}, \hat{t}) = \mathcal{F}_{I, \operatorname{Reg}}(\hat{s}, \hat{t}) + \mathcal{F}_{I, \operatorname{Poles}}(\hat{s}, \hat{t})$$

#### Form-factor framework can incorporate both EFT and explicit NP models

**Felix Wilsch** 

### Local and non-local contributions

Split form-factors into a regular and a singular piece

$$\mathcal{F}_{I}(\hat{s}, \hat{t}) = \mathcal{F}_{I, \operatorname{Reg}}(\hat{s}, \hat{t}) + \mathcal{F}_{I, \operatorname{Poles}}(\hat{s}, \hat{t})$$

- Analytic function of  $\hat{s}$ ,  $\hat{t}$
- Describes EFT contact interactions
  - Can be matched to the SMEFT
- Formal expansion in validity range of the EFT:  $v^2$ ,  $|\hat{s}|$ ,  $|\hat{t}| < \Lambda^2$

$$F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$

Form-factor framework can incorporate both EFT and explicit NP models

### Local and non-local contributions

Split form-factors into a regular and a singular piece

$$\mathcal{F}_{I}(\hat{s},\hat{t}) = \mathcal{F}_{I,\operatorname{Reg}}(\hat{s},\hat{t}) + \mathcal{F}_{I,\operatorname{Poles}}(\hat{s},\hat{t})$$

- Analytic function of  $\hat{s}$ ,  $\hat{t}$
- Describes EFT contact interactions
  - Can be matched to the SMEFT
- Formal expansion in validity range of the EFT:  $v^2$ ,  $|\hat{s}|$ ,  $|\hat{t}| < \Lambda^2$

$$F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^n$$

- Isolated simple poles in  $\hat{s}$ ,  $\hat{t}$ (no branch-cuts at tree-level)

- Describes non-local effects due to exchange of mediators (SM & NP)

$$\begin{split} F_{I,\text{Poles}}(\hat{s},\hat{t}) &= \sum_{a} \frac{v^2 \mathcal{S}_{I(a)}}{\hat{s} - \Omega_a} + \sum_{b} \frac{v^2 \mathcal{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \mathcal{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c} \\ & \uparrow & \uparrow & \uparrow \\ & \text{SM} \ (I = V) & \text{NP} \end{split}$$

#### Form-factor framework can incorporate both EFT and explicit NP models

#### **Regular form-factors** $F_{I, \text{Reg}}(\hat{s}, \hat{t})$

- **Regular form-factors:** analytic functions of  $\hat{s}$ ,  $\hat{t}$
- Describe unresolved d.o.f.  $\rightarrow$  EFT
- Formal expansion in validity range of the EFT  $|\hat{s}|, |\hat{t}| < \Lambda^2$ :

- Derivative expansion: 
$$F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$
  
- EFT expansion:  $F_{I,(n,m)} = \sum_{k=n+m+1} \mathcal{O}\left((v^2/\Lambda^2)^k\right)$ 

• Terms to consider at mass dimension d

$$- d = 6: (n,m) = (0,0)$$

- 
$$d = 8$$
:  $(n, m) = (0, 0), (1, 0), (0, 1)$ 

### Singular form-factors $F_{I, \text{Poles}}(\hat{s}, \hat{t})$

• Pole form-factors: non-analytic functions with finite number of simple poles

$$F_{I,\text{Poles}}(\hat{s},\hat{t}) = \sum_{a} \frac{v^2 \mathscr{S}_{I(a)}}{\hat{s} - \Omega_a} + \sum_{b} \frac{v^2 \mathscr{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \mathscr{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c}$$

- ► *a* : sum over all *s*-channel (colorless) mediators
- ► *b* : sum over all *t*-channel (colorful) mediators
- c : sum over all u-channel (colorful) mediators
- SM contribution  $\rightarrow \mathcal{S}_{V(a)} \ (a \in \{\gamma, Z, W\})$
- NP contribution  $\rightarrow S_{I(a)}, \mathcal{T}_{I(b)}, \mathcal{U}_{I(c)}$
- Residues can be made independent of  $\hat{s}$ ,  $\hat{t}$  by partial fraction decomposition:

 $\hat{u} = -\hat{s} - \hat{t}$ 

 $\Omega_n = m_n^2 - i m_n \Gamma_n$ 

#### SMEFT

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} Q_i^{(6)} + \sum_{i} \frac{C_i^{(8)}}{\Lambda^4} Q_i^{(8)} + \mathcal{O}(\Lambda^{-6})$$

• Cross-section in the SMEFT to  $\mathcal{O}(\Lambda^{-4})$ 

$$\sigma \sim \left|A_{\rm SM}\right|^2 + \frac{1}{\Lambda^2} 2\operatorname{Re}\left(A^{(6)}A_{\rm SM}^*\right) + \frac{1}{\Lambda^4}\left(\left|A^{(6)}\right|^2 + 2\operatorname{Re}\left(A^{(8)}A_{\rm SM}^*\right)\right) + \mathcal{O}(\Lambda^{-6})$$

- Consistent description up to  $\mathcal{O}(\Lambda^{-4})$ 
  - $|A^{(6)}|^2$  contribution can be energy enhanced
  - LFV only through  $|A^{(6)}|^2$  (no SM interference)
- Requires inclusion of d = 8 operators Boughezal, Mereghetti, Petriello [2106.05337]
  - Only d = 8 interference with SM relevant

#### SMEFT

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} Q_i^{(6)} + \sum_{i} \frac{C_i^{(8)}}{\Lambda^4} Q_i^{(8)} + \mathcal{O}(\Lambda^{-6})$$

• Cross-section in the SMEFT to  $\mathcal{O}(\Lambda^{-4})$ 

$$\sigma \sim \left|A_{\rm SM}\right|^2 + \frac{1}{\Lambda^2} 2\operatorname{Re}\left(A^{(6)}A_{\rm SM}^*\right) + \frac{1}{\Lambda^4}\left(\left|A^{(6)}\right|^2 + 2\operatorname{Re}\left(A^{(8)}A_{\rm SM}^*\right)\right) + \mathcal{O}(\Lambda^{-6})$$

- Consistent description up to  $\mathcal{O}(\Lambda^{-4})$ 
  - $|A^{(6)}|^2$  contribution can be energy enhanced
  - LFV only through  $|A^{(6)}|^2$  (no SM interference)
- Requires inclusion of d = 8 operators Boughezal, Mereghetti, Petriello [2106.05337]
  - Only d = 8 interference with SM relevant

• d = 6 Warsaw basis  $\psi^4, \psi^2 H^2 D, \psi^2 X H$ 

Grzadkowski, Iskrzynski, Misiak, Rosiek [1008.4884]

- d = 8 basis (C. Murphy)  $\psi^4 D^2$ ,  $\psi^4 H^2$ ,  $\psi^2 H^2 D^3$ ,  $\psi^2 H^4 D$
- $\psi^4$  contact interactions non-local contributions Murphy [2005.00059]
  - see also: Li et al [2005.00008]

#### **EFT contributions**

• Feynman diagrams for Drell-Yan in the SMEFT to  $\mathscr{O}(\Lambda^{-4})$ 



EFT operator counting and energy scaling

| Dimension         | d=6             |                 |                | d=8             |                     |                 |                     |
|-------------------|-----------------|-----------------|----------------|-----------------|---------------------|-----------------|---------------------|
| Operator classes  | $\psi^4$        | $\psi^2 H^2 D$  | $\psi^2 X H$   | $\psi^4 D^2$    | $\psi^4 H^2$        | $\psi^2 H^4 D$  | $\psi^2 H^2 D^3$    |
| Amplitude scaling | $E^2/\Lambda^2$ | $v^2/\Lambda^2$ | $vE/\Lambda^2$ | $E^4/\Lambda^4$ | $v^2 E^2/\Lambda^4$ | $v^4/\Lambda^4$ | $v^2 E^2/\Lambda^4$ |

**Only contributions interfering with the SM** 

#### **EFT contributions**

• Feynman diagrams for Drell-Yan in the SMEFT to  $\mathcal{O}(\Lambda^{-4})$ 



EFT operator counting and energy scaling

| Dimension                                                                 | d=6             |                 |                | d=8             |                     |                 |                     |
|---------------------------------------------------------------------------|-----------------|-----------------|----------------|-----------------|---------------------|-----------------|---------------------|
| Operator classes                                                          | $\psi^4$        | $\psi^2 H^2 D$  | $\psi^2 X H$   | $\psi^4 D^2$    | $\psi^4 H^2$        | $\psi^2 H^4 D$  | $\psi^2 H^2 D^3$    |
| Amplitude scaling                                                         | $E^2/\Lambda^2$ | $v^2/\Lambda^2$ | $vE/\Lambda^2$ | $E^4/\Lambda^4$ | $v^2 E^2/\Lambda^4$ | $v^4/\Lambda^4$ | $v^2 E^2/\Lambda^4$ |
| Only contributions interfering with the SM<br>Most enhanced contributions |                 |                 |                |                 |                     |                 |                     |

• Example: vector form-factors 
$$\begin{array}{l} \text{NC: } a \in \{\gamma, Z\} \\ \text{CC: } a \in \{W\} \end{array} \\ F_V = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^2} + F_{V(0,1)} \frac{\hat{t}}{v^2} + \sum_a \frac{v^2}{\hat{s} - M_a^2 + iM_a\Gamma_A} \left( \mathscr{S}_{(a,\text{SM})} + \mathscr{S}_{(a)} \right) \end{array}$$

• Schematic form-factor matching to  $\mathcal{O}(\Lambda^{-4})$ :

$$F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

$$F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left( \left[ C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

• Example: vector form-factors 
$$\begin{array}{l} \text{NC: } a \in \{\gamma, Z\} \\ \text{CC: } a \in \{W\} \end{array} \\ F_V = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^2} + F_{V(0,1)} \frac{\hat{t}}{v^2} + \sum_a \frac{v^2}{\hat{s} - M_a^2 + iM_a\Gamma_A} \left( \mathscr{S}_{(a,\text{SM})} + \delta \mathscr{S}_{(a)} \right) \end{array}$$

• Schematic form-factor matching to  $\mathcal{O}(\Lambda^{-4})$ :

$$F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

$$\mathcal{S}_{(\gamma,\text{SM})} = 4\pi\alpha_{\text{em}}Q_lQ_q$$
$$\mathcal{S}_{(Z,\text{SM})} = \frac{4\pi\alpha_{\text{em}}}{c_W^2 s_W^2} g_l^X g_q^Y$$
$$\mathcal{S}_{(W,\text{SM})} = \frac{1}{2}g_2^2$$

$$F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left( \left[ C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

• Example: vector form-factors 
$$\overset{\text{NC: }a \in \{\gamma, Z\}}{\text{CC: }a \in \{W\}}$$
 include BSM mediators similarly  
 $F_V = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^2} + F_{V(0,1)} \frac{\hat{t}}{v^2} + \sum_a \frac{v^2}{\hat{s} - M_a^2 + iM_a\Gamma_A} \left( \mathcal{S}_{(a,SM)} + \delta \mathcal{S}_{(a)} \right)$   
• Schematic form-factor matching to  $\mathcal{O}(\Lambda^{-4})$ :  
 $F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2H^2D^3}^{(8)} + \cdots$   
 $F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4D^2}^{(8)} + \cdots$   
 $F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4D^2}^{(8)} + \cdots$   
 $\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2H^2D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left( \left[ C_{\psi^2H^2D}^{(6)} \right]^2 + C_{\psi^2H^4D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2H^2D^3}^{(8)} + \cdots$ 



