

Search for $B^+ \rightarrow K^+ \nu \nu$ at Belle II and B-tagging using Deep Learning

Lucas Martel, Jacopo Cerasoli CNRS - IPHC

GDR-InF annual meeting, Lyon 03/11/2022

The Belle II experiment

- International collaboration based in Japan.
- Data taking since 2019.
- Asymmetric e⁺e⁻ collider @ 10.58 GeV
- Highest instantaneous luminosity in the world
 (> 4.1 x 10³⁴ cm⁻²s⁻¹)
- Goal is to reach 50 ab⁻¹
- Strengths: rare and partially invisible decays + precision measurements.

2

Motivation

- FCNC b \rightarrow svv transition (allowed in the SM, but suppressed).
- Good probe for BSM physics:
 - Theoretically clean (no radiative effect from photon wrt b \rightarrow s I I transitions).
 - Rare $(\mathcal{B}(B^+ \rightarrow K^+ \nu \nu) \sim 10^{-5})$ but deviation would be a clear sign of BSM physics.
- Interesting:
 - \circ Allows to constrain Wilson coefficients $\rm C_L$ and $\rm C_R$ for effective theories.
 - Input for BSM physics models (Z', leptoquarks, SUSY).
 - Allows for DM searches (invisible final state).

Constraints on Wilson coefficients with existing measurements and target Belle II measurements at 50 ab⁻¹

Motivation

- FCNC b \rightarrow svv transition (allowed in the SM, but suppressed).
- Good probe for BSM physics:
 - Theoretically clean (no radiative effect from photon wrt b \rightarrow s I I transitions).
 - Rare $(\mathcal{B}(B^+ \rightarrow K^+ \nu \nu) \sim 10^{-5})$ but deviation would be a clear sign of BSM.
- Interesting:
 - \circ Allows to constrain Wilson coefficients $\rm C_L$ and $\rm C_R$ for effective theories.
 - Input for BSM physics models (Z', leptoquarks, SUSY).
 - Allows for DM searches (invisible final state).
 - Close to b →s I I transitions where tensions with SM are already seen.

[PRL 127 052302]

Experimental challenges

- No observations yet, but upper limits on branching fraction set by Belle, BaBar and Belle II.
- Rare: $\mathcal{B}(B^+ \rightarrow K^+ \nu \nu) \sim 10^{-5}$.
- Partially invisible final state.

Belle II is the only experiment able to make a first measurement of this process.

High luminosity, clean environment, good hermiticity of the detector.

Constraints on Wilson coefficients with existing measurements

Need for tagging: Full Event Interpretation

- Interested in final state with missing energy
 - Need to reconstruct *tag-side* to constrain the kinematics

- Hierarchical approach based on BDTs
- B reconstructed in more than 10k modes!
- Overall reconstruction efficiency ~ 1%
- Output of final stage interpreted as "B probability"
- Decay modes hard-coded, majority of B decays not considered

See talk by Karim!

[arXiv:1807.08680]

Analysis overview

Search for $B^+ \rightarrow K^+ vv$ decays using the full pre-shutdown Belle II dataset (400 fb⁻¹)

- Analysis strategy:
 - Reconstruct $B^+ \rightarrow K^+ \nu \nu$ against hadronic FEI B_{tao} .
 - Train classifier to separate signal from background and define signal region based on BDT output.
 - Binned fit of two components (signal and background).
 - Use profile likelihood to compute branching fraction or set upper limit.

Event selection

• <u>Hadronic FEI Btag selection</u>: Loose selection on tracks and calorimeter clusters + requirement on B_{tag} mass.

- <u> K^{\pm} signal candidates</u>: Must be "good", i.e come from good tracks and satisfy tight PID requirement.
- $Y(4S) \rightarrow B^+_{sig} B^-_{tag}$ reconstructed from K⁺ candidate and B^-_{tag} .
- No good tracks and at most one pi0 in the rest of event.
- Best candidate based on B_{tag} FEI probability.
- Signal efficiency of this selection ~10⁻².

BDT overview

- BDT based on XGBoost trained on 1ab⁻¹ of simulated bkg events and 50M simulated signal events
- Variables used in the training:
 - Continuum suppression (KSFW moments, $\cos\theta_{TBTO}$, ...)
 - Signal K^+ kinematics ($E_{K}, p_{K}, ...$)
 - D meson suppression variables
 - \circ ~ Missing variables (E_{miss}, p_{miss}, \ldots)
- Pre/post processing so that signal input variables and classifier output uniformly distributed between 0 and 1.

EExtra Clusters v5

Bsgn D1pi chiProb nGoodElectrons Btag SignalProbability

Bson KSFWVariables hso22

Bsgn_KSFWVariables_hso10 Bsgn_D2pi_chiProb Bsgn_KSFWVariables_hso02

Bsgn KSFWVariables hso24

Bsgn_KSFWVariables_hoo0 miss_CMS_cosTheta Bsgn_d0_p delta_r nGoodMuons

Btag_Mbc sumEp

Bsgn_cosTBTO Bsgn_mRecoil

Btag dmID

Ups cosTheta

Bsgn_cosTBz phi K pmiss CMS

Bsgn D1pi M

9

BDT output performance

- BDT trained to separate between signal and background.
- Cut on BDT output > 0.4

	Cut	Cumulative sgn efficiency	Bkg yield
Ι.	Reconstruction + preselection	(57.60 ± 0.11) x 10 ⁻⁴	219903
	BDT cut + single candidate	(37.98 ± 0.09) x 10 ⁻⁴	172

Computing limit (I)

• We set upper limits on $Br(B^+ \rightarrow K^+ vv)$ using profile likelihood method:

 $\lambda(\mu) = \frac{L(\mu, \hat{\nu})}{L(\hat{\mu}, \hat{\nu})} \underbrace{\leftarrow}_{\text{Unconstrained best fit}}^{\text{Constrained best fit}}$

• We can find 90% CL interval with:

$$-\ln\lambda(\mu) = CDF_{\chi_1^2}^{-1}(0.9)/2 = 1.35$$

• We use as likelihood:

Computing limit (II)

- Preliminary conservative estimate of systematics:
 - \circ 1% on L σ
 - \circ 10% on selection efficiency
 - \circ 30% on background yield
- We fit signal and background in 12 BDT output bins using pyhf and compute limit using profile likelihood.
- Br(B⁺→K⁺**vv**) < 1.54 × 10⁻⁵ @90%CL
- improvement wrt Belle full reconstruction

Towards B tagging using deep learning

B reconstruction using Graph Neural Networks Nodes Edges Particle decays are naturally described by tree graphs Goal: develop graph-based Full Event Interpretation (graFEI) Global

Proof of concept: <u>Learning tree structures from leaves for particle decay reconstruction</u> (see also backup, <u>llias Tsaklidis</u>' and <u>Lea Reuter</u>'s master theses)

attributes

• Today's menu: first (preliminary) results on Belle II simulated dataset

Lowest Common Ancestor (LCA) matrix

Adjacency Matrix

Lowest Common Ancestor (LCA) Matrix

graFEI on Belle II simulated dataset

- Model based on graph network blocks
- We input a fully connected graph, output graph has same structure with updated attributes
- Updated edge values used to predict LCAS matrix

graFEI on Belle II simulated dataset: training

- Training done with monogeneric $Y(4S) \rightarrow B^0 (\rightarrow X) B^0 (\rightarrow \nu\nu)$ MC sample
 - Node-level features: particle IDs, 4-momentum, mass hypothesis, charge, impact parameters, ECL cluster variables
 - Edge-level feature: angle between pairs of particles' momenta
 - Global feature: number of final state particles

graFEI on Belle II simulated dataset: B probability

- Signal: monogeneric $\Upsilon(4S) \rightarrow B^0 (\rightarrow X) B^0 (\rightarrow \nu\nu)$ MC sample
- Background: random tracks coming from different B decays

- Having a definition of "B probability" analogous to FEI is desirable
 - Each LCA element has a corresponding probability of belonging to the predicted class
 - Product of class probabilities defined as B probability

$$LCA = \begin{pmatrix} 0 & 3 & 5 \\ 3 & 0 & 5 \\ 5 & 5 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0.62 & 0.31 \\ 0.62 & 0 & 0.76 \\ 0.31 & 0.76 & 0 \end{pmatrix} \to 0.146$$

graFEI on Belle II simulated dataset: comparison with FEI

- Signal efficiency = # well reco decays / # total decays
- Well reco decays with graFEI means decays with perfectly reconstructed LCAS
- graFEI doesn't make predictions on masses of final state particles (yet) and doesn't consider intermediate resonances
- To make a fair comparison, same requirements are applied for the FEI (hence higher-than-usual efficiency)

- Performances competitive with FEI
- Factor ~2 more efficiency with higher background
- Algorithm still to be optimized: room for improvements!

In summary

- $B^+ \rightarrow K^+ \nu \nu$ search using hadronic tagging at Belle II ongoing.
- Hot topic in the wake of tensions seen in $b \rightarrow s \mid l$ decays.
- Would allow to provide additional constraints on $\mathcal{B}(B^+ \rightarrow K^+ \nu \nu)$ in addition to Belle and BaBar measurements.
- Belle II analysis already published on reduced data sample using inclusive tagging approach →two complementary analyses.
- Analysis on track for all $B \rightarrow K^{(^*)}vv$ channels, combination of tagged and untagged measurements on all channels will provide useful inputs for BSM physics models.
- New B-tagging algorithm based on Deep Neural Networks is being developed
 - Early results are promising, stay tuned!

Backup

Additional selection before BDT

- KaonID >0.9
- npi0 in the ROE of the Y(4S) <2

Selection stage	efficiency
Skim + reco	0.015
KaonID	0.011
npi0ROE	0.011
best candidate selection	0.006

• Can train XGBoost to flatten efficiency as a function of q^2

Control samples

- Signal efficiency validation: embedded sample
- Background validation: several control samples to study the data/MC agreement in the BDT input variables and background normalization
 - qqbar background validation: off-resonance data
 - $\circ~$ generic background validation: wrong charge sideband, B^+ ->J/\psi~K^+ , J/ ψ ->µµ, ee

graFEI on Phasespace dataset

- Neural Relational Inference model (NRI)
- Dataset generated with Phasespace library
- 4-momentum used as input
- Average 47.7 % perfectly predicted LCAG matrices

graFEI hyperparameters

- Activation function: elu
- Droput rate = 0.3
- Batch size = 128
- Learning rate = 0.001
- Hidden layer size = 512
- Number hidden layers = 1
- Number of GN blocks = 3 (encoder + intermediate + decoder)