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Motivations
Dark Gauge Forces and their portals

• A dark gauge sector is well motivated by extensions of the SM (e.g. 
unification or DM)  
 

 


• Can couple to the SM via connector fermions or portal matter


•  : Abelian dark forces can connect to the SM through kinetic 
mixing with  gauge boson — 


•  : Non-abelian dark forces require dimension-8 connector 
operator — 

𝒢 = SU(3)c × SU(2)L × U(1)Y × 𝒢′ 

𝒢′ = U(1)x
U(1)Y Δℒ ∝ BμνXμν

𝒢′ ≠ U(1)x
Δℒ ∝ (Fμν)2(Xμν)2

SM Xμ

Portal matter
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Motivation
Challenges for portal matter

• Generically contains accidental symmetry (charge under  ) that makes 
portal matter stable. If they are produced in the early Universe, this leads to a 
relic density of exotic fermions.


• Charged (EM or QCD) relic particles are clearly problematic 


• Neutral (or weakly interacting) relics receive cosmological bounds from Dark 
Matter density, direct and indirect DM detection experiments. These bounds 
can rule out naive models.


• Using a minimal model, this work demonstrates these challenges and 
introduces two mechanisms to avoid them.

𝒢′ 
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Minimal Model of Portal Matter to U(1)x



• Dark photon  with mass , obtained from a dark Higgs or Stueckelberg mechanism. 15 
GeV is a benchmark point 

    
                            


•  ->     . 


•  lightest fermion charged under  and SM-neutral -> DM candidate 

𝒢 = SU(3)c × SU(2)L × U(1)Y × U(1)x

Xμ mx = 15 GeV

m1,2 =
1
2 [mN + mP ∓ (mN − mP)2 + 4λ2v2] m1 ≤ mP ≤ m2

ψ1 U(1)x

4

( N
P0) = ( cα sα

−sα cα) (ψ1
ψ2)

EWSB

Neutral fermions  and  mixP0 N

P−, ψ1,2−Δℒ = (λP̄H̃N + h.c.) + mPP̄P + mNN̄N

P ∼ (1,2, − 1/2; qx) N ∼ (1,1,0; qx)

H̃ = iσ2H*
tan(2α) =

2λv
mP − mN+ rotated interaction with Higgs + gauge bosons



The Model
Portal Operators 

• Kinetic mixing: 


• One loop contribution: 
 




• Can be made arbitrarily small without fine tuning by introducing a mirror copy of 
the connector fermions with opposite  charges


• For  GeV, strongest direct bound comes from LHCb search for 
 (1910.06926) finds  

−ℒ ⊃
ϵ

2 cW
BμνXμν

Δϵ ≃ −
1

3π
α αx ln ( μ

mP ) ≃ − (3 × 10−3)( αx

10 α )
1/2

ln ( μ
mP ) ≈ − 10−3

U(1)x

mx = 15
Xμ → μ+μ− |ϵ | < 10−3
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Laboratory Bounds
Higgs Decays

• For ,  contributes to 

. ATLAS limit (2202.07953) 
excludes the entire parameter region 
considered 


• Contribution to  from heavy fermions in 
the loop. ATLAS (2110.13673) and CMS 
(2111.01299) searches for . For 

 GeV,  
 

•

m1 <
mh

2
h → ψ1ψ̄1

BR(h → inv)

λ ≥ 0.1

h → XX

h → XX → 4ℓ
mx = 15 BR(h → XX) < 2.35 × 10−5
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Laboratory Bounds
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• Precision EW: mixing of  singlet to doublet contributes to oblique parameters S,T,U [Peskin, Takeushi - PRL 
65 (1990) 964, PRD 46 (1992) 381] 


• The minimal doublet-singlet  model is analogous to Higgsino-Bino system. We use Feynrules interfaced with 
MadGraph5 to calculate production cross-section. Remapping of ATLAS Higgsino-Bino search (2108.07586), 
including  and  decays to EW and h. 

•

SU(2)L

P − N

P± ψ2

• From collider bounds only: Large viable parameter space for  
GeV. What about cosmological bounds ?

mN,P ≥ 100 − 700
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Bound from Dark Matter Relic Density
• Assuming that  thermally created in the early universe at  and then 

thermal freezeout.


• Annihilation via  with  , enhanced when  from coannihilation. 


• Computation of relic density  using Feynrules and MadDM, yields upper bounds on 
.

P−, ψ2, ψ1 T ≥ m1/20

ψ1ψ̄1 → VV V = X, Z, W mP ≈ m1

ρ1
mN − mP

100 1000 2000 3000 4000
mP (GeV)

100

1000

2000

3000

4000

m
N

(G
eV

)

∏ = 1.0, Æx = 10 Æ

°3

°2

°1

0

lo
g 1

0
(Ω

1
/Ω

D
M

)

100 1000 2000 3000 4000
mP (GeV)

100

1000

2000

3000

4000

m
N

(G
eV

)

∏ = 1.0, Æx = Æ

°3

°2

°1

0

lo
g 1

0
(Ω

1
/Ω

D
M

)

8

100 1000 2000 3000 4000
mP (GeV)

100

1000

2000

3000

4000

m
N

(G
eV

)

∏ = 0.1, Æx = Æ

°3

°2

°1

0
lo

g 1
0
(Ω

1
/Ω

D
M

)

Collider bounds



• Three tree-level contributions


• Best bound for  GeV from LUX-
ZEPLIN (2022)

m1 > 100

Bounds from Dark Matter Direct Detection
Per-nucleon spin-independent scattering cross-section - σSI

9LUX-ZEPLIN 2207.03764

fp =
GF

2
s2
α(1 − 4s2

W) −
4π
m2

x
ϵ ααx − d̃p

2
9

+
7
9 ∑

q

f p
q ,

fn = −
GF

2
s2
α + 0 − d̃n

2
9

+
7
9 ∑

q

f n
q .

XZ h

σSI =
μ2

n

π [
Zfp + (A − Z)fn

A ]
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Bounds Direct Detection
Rules out the minimal model

•  cancellation possible for  around σSI =
μ2

n

π [
Zfp + (A − Z)fn

A ]
2

, ϵ < 0 mN ≈ mP
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• Minimal model almost entirely excluded by DD experiments. Can we avoid 
these bounds with minimal changes to the model?
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Fix #1
Mass splitting from a Majorana mass term

• Dark Higgs:  allows new Yukawa 
coupling : 
 




• ,  -> 


• Splits Dirac Fermions  mass eigenstates into two pairs 
of Majorana fermions ,  with masses 





• Typical recoil energy in DD  keV. Inelastic 
scattering with  keV are kinematically 
suppressed

Φ ∼ (1,1,0; − 2qx)

Δℒ = yNΦN̄CN + (h . c.)

N = (χN χ̄c
N)T M = yN⟨Φ⟩ Δℒ = M(χN χN + χ̄N χ̄N)

ψ1,2
ψ1± ψ2± m1,2 ± Δm1,2

−ℒ ⊃ −
λ

2 2
sin(2α + 2γ−) h ψ̄1−

ψ1−

−i ψ̄1−
γμψ1+(cos(γ+ − γ−) gx Xμ +[cos(γ+ − γ−) − cos(2α + γ+ + γ−)] ḡ

4
Zμ)

ER ∼ 100
M ≥ 200 − 500

m2

m1 ψ1−

ψ1+

ψ2+

ψ2−

ψ1

ψ2

2Mc2
α

2Ms2
α
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Fix #1 
• For  and  relic density remains identical.


• For , annihilation at late time  probed notably by distorsion of the 
power spectra of the CMB measured by Planck. Excluded region exhibits a band structure 
corresponding to enhancement through the formation of bound states, dependent on 


• Bounds from direct searches remain unchanged for 

M ≪ m1 M ≥ 10 MeV

αx = 10α ψ1−ψ̄1− → XX

mx /mDM

Δm/mx ≪ 1
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Exclusion by Indirect Detection

Exclusion by Direct Detection

Mass splitting from a Majorana mass term



Fix #2
Decay Through Lepton Mixing
• Avoid overabundance of relic portal fermions by allowing them to decay quickly to SM


• Dark Higgs field 


      


•  induces mixing with leptons,   and  





• As long as the couplings are not exceedingly small,  these decays occur before primordial 
nucleosynthesis and neutrino decoupling, and will generally be safe from cosmological bounds


• Simultaneously contributes to ,  and 


• Challenge: Can  decay fast enough while avoiding bounds from LFV and  ?

ϕ ∼ (1,1,0; qx)

−ℒ ⊃ λa ϕ PR LLa + (h . c.) , a = e, μ, τ

⟨ϕ⟩ = η ψ1 → νLa
ϕ ψ1 → νLaX

τ ≃ (6.61 × 10−8 s)( 10−9

λasα )
2

1 TeV
m1

λasα ≳ 10−12

BR(τ → μγ) BR(μ → eγ) Δae,μ

ψ1 Δae,μ
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Fix #2
Decay Through Lepton Mixing

• 


•   ,  

Δaℓa
= +

λ2
a

96π2 ( ma

mP )
2

BR(μ → eγ) =
12π3

m4
μ

α
G2

F ( λe

λμ )
2

× (Δaμ)2 BR(τ → μγ) =
12π3

m4
μ

α
G2

F ( λτ

λμ )
2

× (Δaμ)2 × BR(τ → μνν̄)
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Fix #2
Collider signature

•  is now unstable and can decay to visible particles in colliders.  
Signatures are:  and 


•  yields similar signature as the original setup (long-lived in the 
detector), may be visible in far detectors such as FASER, MATHULSA,… 


• For larger couplings,  decays promptly on typical collider timescale. In the 
limit , dark vector decay product will be boosted -> lepton jets. 
Similar searches exist for  at ATLAS and CMS. To our 
knowledge, there is no directly remappable existing analysis to constrain our 
model.

ψ1
X → ff̄ ϕ → XX

λasα ≤ 10−10

ψ1
mx ≪ m1

h → XX → 4ℓ
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Conclusion

• We study a minimal model of connector fermions to a dark gauged 


• A naive model is ruled out as it includes a DM candidate ruled out by DD 
searches.


• Fix #1 : Through a small Majorana mass term for , DM candidate scatters 
inelastically in DD experiments for vector bosons exchanges. Model is viable 
for 


• Fix #2 : Couple  to LH SM leptons, so that  decays in the early Universe. 
Viable for , could be searched at collider

U(1)x

N

λ ≃ 0.1

P ψ1
10−12 ≲ λasα ≲ 10−3
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Backup
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Direct Detection with Inelastic Scattering

• Typical velocity of DM particles relative to the 
Earth: 


• 


•

v ∼ 10−3

ER =
2μ2

Nv2 cos2(θ)
mN

∼ 100 keV

μN =
mNmχ

mN + mχ
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Higgs Portal Operator
Higgs Portal Operators

•  in the limit ℒ ⊃
αx

6π
λ2

m1m2
H†H XμνXμν mh ≪ m1,2
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