Alexandre Carvunis - IP2I - 04/11/2022

Relic Challenges for Vector-Like Fermions as Connectors to a Dark Sector GDR-InF Annual Workshop 2022 - Lyon

AC, Gavin McGinnis, David E. Morrissey - arXiv:2209.14305

Motivations Dark Gauge Forces and their portals

• A dark gauge sector is well motivated by extensions of the SM (e.g. unification or DM)

 $\mathscr{G} = SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times \mathscr{G}'$

- Can couple to the SM via connector fermions or *portal matter*
- $\mathscr{G}' = U(1)_x$: Abelian dark forces can connect to the SM through kinetic mixing with $U(1)_Y$ gauge boson $U(1)_Y$ gauge boson $-\Delta \mathscr{L} \propto B_{\mu\nu} X^{\mu\nu}$
- $\mathscr{L}' \neq U(1)_x$: Non-abelian dark forces require dimension-8 connector $\mathsf{operator} - \Delta \mathscr{L} \propto (F_{\mu\nu})$ 2 (*Xμν*) 2

Motivation Challenges for portal matter

- Generically contains accidental symmetry (charge under \mathcal{G}') that makes portal matter stable. If they are produced in the early Universe, this leads to a relic density of exotic fermions.
- Charged (EM or QCD) relic particles are clearly problematic
- Neutral (or weakly interacting) relics receive cosmological bounds from Dark Matter density, direct and indirect DM detection experiments. *These bounds can rule out naive models.*
- **• Using a minimal model, this work demonstrates these challenges and introduces two mechanisms to avoid them.**

Minimal Model of Portal Matter to *U*(1)*^x* $\mathcal{L} = SU(3)$ ^{*c*} × $SU(2)$ ^{*L*} × $U(1)$ _{*Y*} × $U(1)$ _{*x*}

• Dark photon X_μ with mass $m_\chi = 15$ GeV, obtained from a dark Higgs or Stueckelberg mechanism. 15 GeV is a benchmark point

EWSB Neutral fermions P^0 and N mix

•
$$
m_{1,2} = \frac{1}{2} \left[m_N + m_P \mp \sqrt{(m_N - m_P)^2 + 4\lambda^2 v^2} \right] \rightarrow m_1 \le m_P \le m_2
$$
.

$$
P \sim (1,2, -1/2; q_x) \qquad N \sim (1,1,0; q_x)
$$

$$
-\Delta \mathcal{L} = (\lambda \bar{P} \tilde{H} N + \text{h.c.}) + m_p \bar{P} P + m_N \bar{N} N
$$

$$
\tilde{H} = i\sigma_2 H^*
$$

• ψ_1 lightest fermion charged under $U(1)_x$ and SM-neutral -> DM candidate

The Model Portal Operators

• Kinetic mixing: - \mathscr{L} ⊃

• One loop contribution:

ϵ

2 *cW*

- the connector fermions with opposite $U(1)_x$ charges
- For $m_x = 15$ GeV, strongest direct bound comes from LHCb search for (1910.06926) finds $X^\mu \rightarrow \mu^+ \mu^-$ (1910.06926) finds $\mid\! \epsilon \mid < 10^{-3}$

BμνXμν

• Can be made arbitrarily small without fine tuning by introducing a mirror copy of

$$
\Delta \epsilon \simeq -\frac{1}{3\pi} \sqrt{\alpha \, \alpha_x} \ln \left(\frac{\mu}{m_P} \right) \simeq -\left(3 \times 10^{-3} \right) \left(\frac{\alpha_x}{10 \, \alpha} \right)^{1/2} \ln \left(\frac{\mu}{m_P} \right) \approx -\,10^{-3}
$$

Laboratory Bounds Higgs Decays

For $m_1 < \frac{n}{2}$, $h \to \psi_1 \bar{\psi}_1$ contributes to $BR(h \rightarrow inv)$. ATLAS limit (2202.07953) excludes the entire parameter region considered *λ* ≥ 0.1 *mh* 2 $h \to \psi_1 \bar{\psi}_1$

 \Box Contribution to $h \to XX$ from heavy fermions the loop. ATLAS (2110.13673) and CMS (2111.01299) searches for $h \to XX \to 4\ell$. For $m_{\chi}=15$ GeV, $= 15$ GeV, $BR(h \to XX) < 2.35 \times 10^{-5}$

•

Laboratory Bounds

Precision EW: mixing of $SU(2)_L$ **singlet to doublet contributes to oblique parameters S,T,U [Peskin, Takeushi - PRL 2014] As (1999) 2014.** 65 (1990) 964, PRD 46 (1992) 381]

The minimal doublet-singlet $P-N$ model is analogous to Higgsino-Bino system. We use Feynrules interfaced with MadGraph5 to calculate production cross-section. Remapping of ATLAS Higgsino-Bino search (2108.07586), including P^{\pm} and ψ_2 decays to EW and h. P^\pm and ψ_2

• From collider bounds only: Large viable parameter space for $m_{N,P} \geq 100 - 700$ GeV. What about cosmological bounds ?

•

Bound from Dark Matter Relic Density

- Assuming that P^-, ψ_2, ψ_1 thermally created in the early universe at $T \geq m_1/20$ and then thermal freezeout.
-
- Computation of relic density ρ_1 using Feynrules and MadDM, yields upper bounds on $m_N - m_P$.

• Annihilation via $\psi_1 \bar{\psi}_1 \to VV$ with $V = X, Z, W$, enhanced when $m_P \approx m_1$ from coannihilation.

- Three tree-level contributions
- Best bound for $m_1 > 100$ GeV from LUX-ZEPLIN (2022)

Bounds from Dark Matter Direct Detection Per-nucleon spin-independent scattering cross-section - σ_{SI}

$$
f_p = \frac{G_F}{\sqrt{2}} s_\alpha^2 (1 - 4s_W^2) - \frac{4\pi}{m_x^2} \epsilon \sqrt{\alpha \alpha_x} - \tilde{d}_p \left[\frac{2}{9} + \frac{7}{9} \sum_q f_q^p \right],
$$

$$
f_n = -\frac{G_F}{\sqrt{2}} s_\alpha^2 + 0 - \tilde{d}_n \left[\frac{2}{9} + \frac{7}{9} \sum_q f_q^n \right].
$$

$$
\sigma_{\mathbf{SI}} = \frac{\mu_n^2}{\pi} \left[\frac{Zf_p + (A - Z)f_n}{A} \right]^2
$$

• Minimal model almost entirely excluded by DD experiments. Can we avoid these bounds with minimal changes to the model?

, cancellation possible for $\epsilon < 0$ around $m_N \approx m_P$

Fix #1

Mass splitting from a Majorana mass term

• Dark Higgs: $\Phi \sim (1,1,0; -2q_x)$ allows new Yukawa coupling :

 $\Delta \mathcal{L} = y_N \Phi \overline{N}^C N + (h.c.)$

- $N = (\chi_N \bar{\chi}_N^c)^T$, $M = y_N^T$ (Φ) -> $N = (\chi_N \bar{\chi}_N^c)^T$, $M = y_N \langle \Phi \rangle \rightarrow \Delta \mathscr{L} = M(\chi_N \chi_N + \bar{\chi}_N \bar{\chi}_N)$
- Splits Dirac Fermions $\psi_{1,2}$ mass eigenstates into two pairs of Majorana fermions $\psi_{1\pm}$, $\psi_{2\pm}$ with masses $m_{1,2} \pm \Delta m_{1,2}$

• Typical recoil energy in DD $E_R \sim 100$ keV. Inelastic scattering with $M \geq 200-500$ keV are kinematically suppressed

$$
-\mathcal{L} \supset -\frac{\lambda}{2\sqrt{2}} \sin(2\alpha + 2\gamma_{-}) h \bar{\psi}_{1} \psi_{1} -\frac{\lambda}{2\sqrt{2}} \sin(2\alpha + 2\gamma_{-}) h \bar{\psi}_{1} \psi_{1} -\frac{\lambda}{2\sqrt{2}} \sin(2\alpha + 2\gamma_{-}) h \bar{\psi}_{1} \psi_{1} + \left[\cos(\gamma_{+} - \gamma_{-}) - \cos(2\alpha + \gamma_{+} + \gamma_{-}) \right]
$$

• For $\alpha_x = 10\alpha$, annihilation at late time ψ_1 - $\bar{\psi}_1$ - \rightarrow *XX* probed notably by distorsion of the power spectra of the CMB measured by Planck. Excluded region exhibits a band structure corresponding to enhancement through the formation of bound states, dependent on m_χ/m_{DM}

Mass splitting from a Majorana mass term

- For $M \ll m_1$ and $M \geq 10 \, MeV$ relic density remains identical.
-
-

Fix #2 Decay Through Lepton Mixing

- Avoid overabundance of relic portal fermions by allowing them to decay quickly to SM
- Dark Higgs field $\phi \sim (1,1,0; q_x)$

- nucleosynthesis and neutrino decoupling, and will generally be safe from cosmological bounds
- Simultaneously contributes to $BR(\tau \rightarrow \mu \gamma)$, $BR(\mu \rightarrow e \gamma)$ and $\Delta a_{e,\mu}$
- Challenge: Can ψ_1 decay fast enough while avoiding bounds from LFV and $\Delta a_{e,\mu}$?

$$
-\mathscr{L} \supset \lambda_a \phi \overline{P}_R L_{La} + (h.c.), \quad a = e, \mu, \tau
$$

• $\langle \phi \rangle = \eta$ induces mixing with leptons, $\psi_1 \to \nu_{L_a} \phi$ and $\psi_1 \to \nu_{L_a} X$

 $\tau \simeq (6.61 \times 10^{-8})$

$$
-8 \text{ s)} \left(\frac{10^{-9}}{\lambda_a s_a} \right)^2 \frac{1 \text{ TeV}}{m_1}
$$

• As long as the couplings are not exceedingly small, $\lambda_a s_\alpha \gtrsim 10^{-12}$ these decays occur before primordial

$$
\mu \rightarrow e\gamma
$$
) and $\Delta a_{e,\mu}$

Decay Through Lepton Mixing

\n
$$
\Delta a_{\ell_a} = +\frac{\lambda_a^2}{96\pi^2} \left(\frac{m_a}{m_P}\right)^2
$$
\n
$$
\text{BR}(\mu \to e\gamma) = \frac{12\pi^3}{m_\mu^4} \frac{\alpha}{G_F^2} \left(\frac{\lambda_e}{\lambda_\mu}\right)^2 \times (\Delta a_\mu)^2 \text{, BR}(\tau \to \mu\gamma) =
$$
\n
$$
m_P = 100 \text{ GeV}
$$
\n
$$
200 \text{ GeV}
$$
\n
$$
400 \text{ GeV}
$$
\n
$$
m_P = \frac{10^{-10} \text{ PaV}}{200 \text{ GeV}} \text{ cm}^{-10} \text{ PaV}
$$
\n
$$
m_{\ell} = \frac{10^{-10} \text{ PaV}}{10^{-10} \text{ PaV}} \text{ BR}(\mu \to e\gamma)_{\text{lim}}
$$
\n
$$
m_{\ell} = \frac{\lambda_a}{\lambda_b} \text{ BR}(\mu \to e\gamma)_{\text{lim}}
$$
\n
$$
m_{\ell} = \frac{\lambda_a}{\lambda_a} \text{ BR}(\mu \to e\gamma)_{\text{lim}}
$$
\n
$$
m_{\ell} = \frac{\lambda_a}{\lambda_a} \text{ BR}(\mu \to e\gamma)_{\text{lim}}
$$
\n
$$
m_{\ell} = \frac{\lambda_a}{\lambda_a} \text{ BR}(\mu \to e\gamma)_{\text{lim}}
$$
\n
$$
m_{\ell} = \frac{\lambda_a}{\lambda_a} \text{ BR}(\mu \to e\gamma)_{\text{lim}}
$$

Yes !

Fix #2 Collider signature

• For larger couplings, ψ_1 decays promptly on typical collider timescale. In the limit $m_x \ll m_1$, dark vector decay product will be boosted -> lepton jets. knowledge, there is no directly remappable existing analysis to constrain our

- ψ_1 is now unstable and can decay to visible particles in colliders. Signatures are: $X \rightarrow ff$ and $X \rightarrow f\bar{f}$ and $\phi \rightarrow XX$
- $\lambda_a s_\alpha \leq 10^{-10}$
- Similar searches exist for $h \to XX \to 4\ell^2$ at ATLAS and CMS. To our model.

• $\lambda_a s_\alpha \leq 10^{-10}$ yields similar signature as the original setup (long-lived in the detector), may be visible in far detectors such as FASER, MATHULSA,...

Conclusion

-
- A naive model is ruled out as it includes a DM candidate ruled out by DD searches.
- for $\lambda \simeq 0.1$
- Viable for $10^{-12} \lesssim \lambda_a s_\alpha \lesssim 10^{-3}$, could be searched at collider $10^{-12} \leq \lambda_a s_\alpha \leq 10^{-3}$

• We study a minimal model of connector fermions to a dark gauged $U(1)_x$

• $Fix #1$: Through a small Majorana mass term for N , DM candidate scatters inelastically in DD experiments for vector bosons exchanges. Model is viable

• Fix $\#2$: Couple P to LH SM leptons, so that ψ_1 decays in the early Universe.

Direct Detection with Inelastic Scattering

• Typical velocity of DM particles relative to the Earth: $v \sim 10^{-3}$

$$
E_R = \frac{2\mu_N^2 v^2 \cos^2(\theta)}{m_N}
$$

$$
\mu_N = \frac{m_N m_\chi}{m_N + m_\chi}
$$
 100 keV

Higgs Portal Operator Higgs Portal Operators

$$
\int_{-\infty}^{\infty} \frac{\alpha_x}{6\pi} \frac{\lambda^2}{m_1 m_2} H^{\dagger} H X_{\mu\nu} X^{\mu\nu}
$$
 in the limit

$HX_{\mu\nu}X^{\mu\nu}$ in the limit $m_h \ll m_{1,2}$