Enhancing $B_s \rightarrow e^+ e^$ to an Observable Level

Gilberto Tetlalmatzi-Xolocotzi

Based on:

M. Black, A. Plascencia and GTX, 2208.08995 [hep-ph]

CPPS, Theoretische Physik 1, Universität Siegen,

Université Paris-Saclay, CNRS/IN2P3, IJCLab,

In the SM the processes $B_s \rightarrow l^+ l^-$ are induced via loops

They are extremely clean: all the non-perturbative information is encoded in the decay constant of the initial *B* meson which is known with a precision of 1%.

$$f_{Bs} = 230.3 \pm 1.3 \, MeV$$

$$\bar{\mathcal{B}}r(B_s \to \ell^+ \ell^-)_{\rm SM} = \frac{1}{1-y_s} \frac{G_F^2 \alpha^2}{16\pi^3} \tau_{B_s} |V_{ts}V_{tb}^*|^2 f_{B_s}^2 M_B m_\ell^2 \sqrt{1-4\frac{m_\ell^2}{M_{B_s}^2}} |C_{10}^{\rm SM}|^2$$

The decay probability of $B_s \to l^+ l^-$ is proportional to the square of the mass of the lepton in the final state m_l^2

$$\bar{\mathcal{B}}r(B_s \to \ell^+ \ell^-)_{\rm SM} = \frac{1}{1-y_s} \frac{G_F^2 \alpha^2}{16\pi^3} \tau_{B_s} |V_{ts}V_{tb}^*|^2 f_{B_s}^2 M_B m_\ell^2 \sqrt{1-4\frac{m_\ell^2}{M_{B_s}^2}} |C_{10}^{\rm SM}|^2$$

The decay probability of $B_s \to l^+ l^-$ is proportional to the square of the mass of the lepton in the final state m_l^2

$$\bar{\mathcal{B}}r(B_s \to \ell^+ \ell^-)_{\rm SM} = \frac{1}{1 - y_s} \frac{G_F^2 \alpha^2}{16\pi^3} \tau_{B_s} |V_{ts} V_{tb}^*|^2 f_{B_s}^2 M_B m_\ell^2 \sqrt{1 - 4\frac{m_\ell^2}{M_{B_s}^2}} |C_{10}^{\rm SM}|^2$$
The decay probability of $B_s \to l^+ l^-$ is proportional to the square of the mass of the lepton in the final state m_l^2

$$m_{\tau} = 1.776 \ GeV \qquad \bar{\mathcal{B}}r(B_s \to \tau^+ \tau^-)_{\rm SM} = (7.52 \pm 0.20) \times 10^{-7}$$

$$\bar{\mathcal{B}}r(B_s \to \ell^+ \ell^-)_{\rm SM} = \frac{1}{1-y_s} \frac{G_F^2 \alpha^2}{16\pi^3} \tau_{B_s} |V_{ts}V_{tb}^*|^2 f_{B_s}^2 M_B m_\ell^2 \sqrt{1-4\frac{m_\ell^2}{M_{B_s}^2}} |C_{10}^{\rm SM}|^2$$
The decay probability of $B_s \to l^+ l^-$ is proportional to the square of the mass of the lepton in the final state m_l^2

$$m_{\tau} = 1.776 \ GeV \qquad \bar{\mathcal{B}}r(B_s \to \tau^+ \tau^-)_{\rm SM} = (7.52 \pm 0.20) \times 10^{-5}$$

$$m_{\mu} = 0.105 \ GeV \qquad \bar{\mathcal{B}}r(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.55 \pm 0.10) \times 10^{-5}$$

$$\bar{\mathcal{B}}r(B_s \to \ell^+ \ell^-)_{\rm SM} = \frac{1}{1 - y_s} \frac{G_F^2 \alpha^2}{16\pi^3} \tau_{B_s} |V_{ts}V_{tb}^*|^2 f_{B_s}^2 M_B m_{\ell}^2 \sqrt{1 - 4\frac{m_{\ell}^2}{M_{B_s}^2}} |C_{10}^{\rm SM}|^2$$
The decay probability of $B_s \to l^+ l^-$ is proportional to the square of the mass of the lepton in the final state m_l^2
 $m_{\tau} = 1.776 \ GeV$
 $\bar{\mathcal{B}}r(B_s \to \tau^+ \tau^-)_{\rm SM} = (7.52 \pm 0.20) \times 10^{-7}$
 $m_{\mu} = 0.105 \ GeV$
 $\bar{\mathcal{B}}r(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.55 \pm 0.10) \times 10^{-9}$
 $m_e = 0.5 \times 10^{-3} \ GeV$
 $\bar{\mathcal{B}}r(B_s \to e^+ e^-)_{\rm SM} = (8.30 \pm 0.22) \times 10^{-14}$

$$\begin{split} \bar{\mathcal{B}}r(B_s \to \ell^+ \ell^-)_{\rm SM} &= \frac{1}{1 - y_s} \frac{G_F^2 \alpha^2}{16\pi^3} \tau_{B_s} |V_{ts} V_{tb}^*|^2 f_{B_s}^2 M_B m_{\ell}^2 \sqrt{1 - 4\frac{m_{\ell}^2}{M_{B_s}^2}} |C_{10}^{\rm SM}|^2 \\ \end{split}$$
The decay probability of $B_s \to l^+ l^-$ is proportional to the square of the mass of the lepton in the final state m_l^2
 $m_{\tau} = 1.776 \ GeV$
 $\bar{\mathcal{B}}r(B_s \to \tau^+ \tau^-)_{\rm SM} = (7.52 \pm 0.20) \times 10^{-7} \\ m_{\mu} = 0.105 \ GeV$
 $\bar{\mathcal{B}}r(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.55 \pm 0.10) \times 10^{-9} \\ m_e = 0.5 \times 10^{-3} \ GeV$
 $\bar{\mathcal{B}}r(B_s \to e^+e^-)_{\rm SM} = (8.30 \pm 0.22) \times 10^{-14} \end{split}$

Experimental Status

From a weighted average including measurements from LHCb, ATLAS and CMS:

$$\bar{\mathcal{B}}r(B_s \to \mu^+ \mu^-)_{\rm Exp} = (3.39 \pm 0.29) \times 10^{-9}$$

which is in agreement with the SM result

$$\bar{\mathcal{B}}r(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.55 \pm 0.10) \times 10^{-9}$$

For pairs of τ leptons in the final state $\bar{\mathcal{B}}r(B_s \to \tau^+ \tau^-) < 6.8 \times 10^{-3}$ LHCb [hep-ex/1703.02508] $\bar{\mathcal{B}}r(B_s \to \tau^+ \tau^-)_{\rm SM} = (7.52 \pm 0.20) \times 10^{-7}$

Experimental Status

Updated bound from LHCb $\bar{B}r(B_s \rightarrow e^+e^-) < 9.4 \times 10^{-9}$ LHCb [hep-ex/2003.03999]

 $\bar{\mathcal{B}}r(B_s \to e^+e^-)_{\rm SM} = (8.30 \pm 0.22) \times 10^{-14}$

5 Orders of magnitude gap between the experimental bound and the SM

The SM value is out of reach of current or foreseeable experiments

Any near future observation of $B_s \rightarrow e^+ e^$ would be an unambiguous signal of NEW PHYSICS

Effective theory treatment

 $\mathcal{H}_{\text{eff}} = -\frac{G_F V_{tb} V_{ts}^* \alpha}{\sqrt{2}\pi} \left[C_{10}^{\ell\ell} O_{10}^{\ell\ell} + C_S^{\ell\ell} O_S^{\ell\ell} + C_P^{\ell\ell} O_P^{\ell\ell} + + C_{10'}^{\ell\ell} O_{10'}^{\ell\ell} + C_{S'}^{\ell\ell} O_{S'}^{\ell\ell} + C_{P'}^{\ell\ell} O_{P'}^{\ell\ell} \right] + \text{h.c.}$

In the SM the only
$$\mathcal{O}_{10}^{\ell\ell} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$
 contributes
NP Vector operator $\mathcal{O}_{10'}^{\ell\ell} = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$
NP Scalar
operators $\mathcal{O}_{S}^{\ell\ell} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell)$ $\mathcal{O}_{S'}^{\ell\ell} = m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell)$
NP
Pseudoscalar
operators $\mathcal{O}_{P'}^{\ell\ell} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma^{5}\ell)$
 $\mathcal{O}_{P'}^{\ell\ell} = m_{b}(\bar{s}P_{L}b)(\bar{\ell}\gamma^{5}\ell)$

Enhancements on $B_{s} \rightarrow e^{+} e^{-}$ In the presence of oscidoscalar and scalar particles $\bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-}) = \bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-})_{\mathrm{SM}} \times \left[|P_{\ell\ell}|^{2} + \frac{1-y_{s}}{1+y_{s}}|S_{\ell\ell}|^{2}\right]$ Enhancements on $B_{s} \rightarrow e^{+} e^{-}$ In the presence of oscidoscalar and scalar particles $\bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-}) = \bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-})_{\mathrm{SM}} \times \left[|P_{\ell\ell}|^{2} + \frac{1-y_{s}}{1+y_{s}}|S_{\ell\ell}|^{2}\right]$

$$P_{\ell\ell} \equiv \frac{C_{10}^{\ell\ell} - C_{10'}^{\ell\ell}}{C_{10}^{\rm SM}} + \frac{M_{B_s}^2}{2m_\ell} \left(\frac{m_b}{m_b + m_s}\right) \left[\frac{C_P^{\ell\ell} - C_{P'}^{\ell\ell}}{C_{10}^{\rm SM}}\right]$$

$$S_{\ell\ell} \equiv \sqrt{1 - 4\frac{m_{\ell}^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_{\ell}} \left(\frac{m_b}{m_b + m_s}\right) \left[\frac{C_S^{\ell\ell} - C_{S'}^{\ell\ell}}{C_{10}^{\rm SM}}\right]$$

Enhancements on $B_{s} \rightarrow e^{+} e^{-}$ In the presence of oscudoscalar and scalar particles $\bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-}) = \bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-})_{\mathrm{SM}} \times \left[|P_{\ell\ell}|^{2} + \frac{1-y_{s}}{1+y_{s}}|S_{\ell\ell}|^{2}\right]$

$$P_{\ell\ell} \equiv \frac{C_{10}^{\ell\ell} - C_{10'}^{\ell\ell}}{C_{10}^{\text{SM}}} + \frac{M_{B_s}^2}{2m_\ell} \left(\frac{m_b}{m_b + m_s}\right) \left[\frac{C_P^{\ell\ell} - C_{P'}^{\ell\ell}}{C_{10}^{\text{SM}}}\right]$$

For electrons and muons the factor enhances the NP effects

$$S_{\ell\ell} \equiv \sqrt{1 - 4\frac{m_{\ell}^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_{\ell}} \left(\frac{m_b}{m_b + m_s}\right) \left[\frac{C_S^{\ell\ell} - C_{S'}^{\ell\ell}}{C_{10}^{\rm SM}}\right]$$

 m_{ℓ}

R. Fleischer, R. Jaarsma, GTX [1703.10160] Enhancements on $B_{s} \rightarrow e^{+} e^{-}$ In the presence of oscidoscalar and scalar particles $\bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-}) = \bar{\mathcal{B}}r(B_{s} \rightarrow \ell^{+}\ell^{-})_{\mathrm{SM}} \times \left[|P_{\ell\ell}|^{2} + \frac{1-y_{s}}{1+y_{s}}|S_{\ell\ell}|^{2}\right]$

$$P_{\ell\ell} \equiv \frac{C_{10}^{\ell\ell} - C_{10'}^{\ell\ell}}{C_{10}^{\rm SM}} + \frac{M_{B_s}^2}{2m_\ell} \left(\frac{m_b}{m_b + m_s}\right) \left[\frac{C_P^{\ell\ell} - C_{P'}^{\ell\ell}}{C_{10}^{\rm SM}}\right]$$

For electrons and muons the factor enhances the NP effects

 $S_{\ell\ell} \equiv \sqrt{1 - 4\frac{m_\ell^2}{M_D^2} \frac{M_{B_s}^2}{2m_\ell} \left(\frac{m_b}{m_b + m_c}\right) \left[\frac{C_S^{\ell\ell} - C_{S'}^{\ell\ell}}{C_S^{\rm SM}}\right]}$

$$m_{\ell}$$

R. Fleischer, R. Jaarsma, GTX [1703.10160]

For the effect to take place the Wilson coefficients should not be proportional to the mass of the final state lepton.

The THDM and
$$B_{s} \rightarrow e^{+} e^{-}$$

The Type III THDM
 $-\mathcal{L} \supset \bar{Q}_{L} \left(Y_{1}^{u} \widetilde{H}_{1} + Y_{2}^{u} \widetilde{H}_{2}\right) u_{R} + \bar{Q}_{L} \left(Y_{1}^{d} H_{1} + Y_{2}^{d} H_{2}\right) d_{R}$
 $+ \bar{\ell}_{L} \left(Y_{1}^{e} H_{1} + Y_{2}^{e} H_{2}\right) e_{R} + \text{h.c.},$
The two doublets are coupled to quarks and leptons
 $H_{1}^{T} = (H_{1}^{+}, (v_{1} + H_{1}^{0} + iA_{1}^{0})/\sqrt{2})$
 $\widetilde{H}_{1} = i\sigma_{2}H_{1}^{*}$
Rotation to the
physics basis
 $- \left(\begin{matrix} H \\ h \end{matrix} \end{matrix} \right) = \left(\begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{matrix} \right) \left(\begin{matrix} H_{2} \\ H_{2}^{0} \end{matrix} \right)$
 $\left(\begin{matrix} G \\ A \end{matrix} \end{matrix} \right) = \left(\begin{matrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{matrix} \right) \left(\begin{matrix} H_{1}^{+} \\ H_{2}^{+} \end{matrix} \right)$

$$\begin{array}{l} \textbf{The THDM and } B_{s} \Rightarrow e^{+} e^{-} \\ \textbf{The Type III THDM} \\ \hline -\mathcal{L} \supset \bar{Q}_{L} \left(Y_{1}^{u} \widetilde{H}_{1} + Y_{2}^{u} \widetilde{H}_{2}\right) u_{R} + \bar{Q}_{L} \left(Y_{1}^{d} H_{1} + Y_{2}^{d} H_{2}\right) d_{R} \\ + \bar{\ell}_{L} \left(Y_{1}^{e} H_{1} + Y_{2}^{e} H_{2}\right) e_{R} + \text{h.c.} , \\ \hline \textbf{The two doublets are coupled to quarks and leptons} \\ H_{1}^{T} = (H_{1}^{+}, (v_{1} + H_{1}^{0} + iA_{1}^{0})/\sqrt{2}) \qquad \widetilde{H}_{1} = i\sigma_{2}H_{1}^{*} \\ \hline \textbf{H}_{1}^{G} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H_{1}^{0} \\ H_{2}^{0} \end{pmatrix} \\ \begin{pmatrix} G \\ A \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} A_{1}^{0} \\ A_{2}^{0} \end{pmatrix} \\ \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} H_{1}^{\pm} \\ H_{2}^{\pm} \end{pmatrix} \end{array}$$

The THDM and
$$B_s \Rightarrow e^+ e^-$$

The Type III THDM
 $-\mathcal{L} \supset \bar{Q}_L \left(Y_1^u \tilde{H}_1 + Y_2^u \tilde{H}_2\right) u_R + \bar{Q}_L \left(Y_1^d H_1 + Y_2^d H_2\right) d_R$
 $+ \bar{\ell}_L (Y_1^e H_1 + Y_2^e H_2) e_R + \text{h.c.},$
The two doublets are coupled to quarks and leptons
 $H_1^T = (H_1^+, (v_1 + H_1^0 + iA_1^0)/\sqrt{2})$
 $\tilde{H}_1 = i\sigma_2 H_1^*$
NP neutral
scalars
 $H_1^{\text{G}} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \beta \end{pmatrix} \begin{pmatrix} H_1^0 \\ H_2^0 \end{pmatrix}$
 $\begin{pmatrix} G \\ H^\pm \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} A_1^0 \\ A_2^0 \end{pmatrix}$

The THDM and $B_s \rightarrow e^+ e^-$

The relevant interactions are then

 $-\mathcal{L} \supset y_{ee} \,\bar{e}eH + y_{bs} \,\bar{b}sH - i \,y_{ee} \,\bar{e}\gamma^5 eA - i \,y_{bs} \,\bar{b}\gamma^5 sA$

leading to the following Wilson coefficients

$$C_{S}^{ee} = \frac{y_{ee}y_{bs}}{M_{H}^{2}} \left(\frac{\sqrt{2}\pi}{m_{b}G_{F}V_{tb}V_{ts}^{*}\alpha} \right), \qquad C_{S'}^{ee} = C_{S}^{ee},$$

$$C_{P}^{ee} = -\frac{y_{ee}y_{bs}}{M_{A}^{2}} \left(\frac{\sqrt{2}\pi}{m_{b}G_{F}V_{tb}V_{ts}^{*}\alpha} \right), \qquad C_{P'}^{ee} = -C_{P}^{ee}, \qquad \text{In our model}$$

$$P_{\ell\ell} \equiv \frac{C_{10}^{\ell\ell} - C_{10'}^{\ell\ell}}{C_{10}^{\rm SM}} + \frac{M_{B_s}^2}{2m_\ell} \left(\frac{m_b}{m_b + m_s}\right) \left[\frac{C_P^{\ell\ell} - C_{P'}^{\ell\ell}}{C_{10}^{\rm SM}}\right]$$

$$S_{\ell\ell} \equiv \sqrt{1 - 4\frac{m_{\ell}^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_{\ell}} \left(\frac{m_b}{m_b + m_s}\right) \begin{bmatrix} \frac{C_S^{\ell\ell} - C_{S'}^{\ell\ell}}{C_{10}^{\text{SM}}} \end{bmatrix}$$

The THDM and $B_s \rightarrow e^+ e^-$

The relevant interactions are then

 $-\mathcal{L} \supset y_{ee} \,\bar{e}eH + y_{bs} \,\bar{b}sH - i \,y_{ee} \,\bar{e}\gamma^5 eA - i \,y_{bs} \,\bar{b}\gamma^5 sA$

leading to the following Wilson coefficients

$$C_{S}^{ee} = \frac{y_{ee}y_{bs}}{M_{H}^{2}} \left(\frac{\sqrt{2}\pi}{m_{b}G_{F}V_{tb}V_{ts}^{*}\alpha} \right), \qquad C_{S'}^{ee} = C_{S}^{ee},$$

$$C_{P}^{ee} = -\frac{y_{ee}y_{bs}}{M_{A}^{2}} \left(\frac{\sqrt{2}\pi}{m_{b}G_{F}V_{tb}V_{ts}^{*}\alpha} \right), \qquad C_{P'}^{ee} = -C_{P}^{ee}, \qquad \text{In our model}$$

No contribution from *H* to the branching fraction

Scalar potential

$$\begin{split} V(H_{1},H_{2}) &= m_{11}^{2}H_{1}^{\dagger}H_{1} + m_{22}^{2}H_{2}^{\dagger}H_{2} - m_{12}^{2}\left[\left(H_{1}^{\dagger}H_{2}\right) + \text{h.c.}\right] \\ &+ \frac{\lambda_{1}}{2}\left(H_{1}^{\dagger}H_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} + \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) \\ &+ \left[\frac{\lambda_{5}}{2}\left(H_{1}^{\dagger}H_{2}\right)^{2} + \lambda_{6}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{1}^{\dagger}H_{2}\right) + \lambda_{7}\left(H_{2}^{\dagger}H_{2}\right)\left(H_{1}^{\dagger}H_{2}\right) + \text{h.c.}\right]. \end{split}$$

Mass constraints

From perturbativity and vacuum stability

$$0 < \lambda_{1,2} < 4$$
$$-\sqrt{\lambda_1 \lambda_2} < \lambda_3 < 4$$
$$-4 < \lambda_{4,5,6,7} < 4$$

Scalar potential

$$\begin{split} V(H_{1},H_{2}) &= m_{11}^{2}H_{1}^{\dagger}H_{1} + m_{22}^{2}H_{2}^{\dagger}H_{2} - m_{12}^{2}\left[\left(H_{1}^{\dagger}H_{2}\right) + \text{h.c.}\right] \\ &+ \frac{\lambda_{1}}{2}\left(H_{1}^{\dagger}H_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} + \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) \\ &+ \left[\frac{\lambda_{5}}{2}\left(H_{1}^{\dagger}H_{2}\right)^{2} + \lambda_{6}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{1}^{\dagger}H_{2}\right) + \lambda_{7}\left(H_{2}^{\dagger}H_{2}\right)\left(H_{1}^{\dagger}H_{2}\right) + \text{h.c.}\right]. \end{split}$$

Mass constraints

From perturbativity and vacuum stability

$$0 < \lambda_{1,2} < 4$$
$$-\sqrt{\lambda_1 \lambda_2} < \lambda_3 < 4$$
$$-4 < \lambda_{4,5,6,7} < 4$$

The possible size of the NP couplings to quarks and leptons has to be determined

Constraints on the quark coupling y_{bs}

Constraints from neutral B meson mixing

New Physics

$$\Delta M_s^{\rm SM} = 17.49 \pm 0.64 \, \mathrm{ps}^{-1}$$

 $\Delta M_s^{\rm Exp} = 17.765 \pm 0.006 \, {\rm ps}^{-1}$

Constraints on the product $y_{ee}y_{bs}$ from $B \to K^{(*)}e^+e^$ triggered by $b \to s e^+ e^-$ transitions

Observable	q^2 bin (GeV ²)	Exp. Avg.	SM Pred.
$10^8 \times \frac{\Delta \mathcal{B}}{\Delta q^2} (B^+ \to K^+ e^+ e^-)$	[1.0,6.0]	3.24 ± 0.65 [37, 38]	3.37 ± 0.56
	[0.1, 4.0]	4.70 ± 1.01 [38]	3.40 ± 0.58
	[4.0, 8.12]	2.36 ± 0.79 [38]	3.31 ± 0.54
$10^7 \times \frac{\Delta \mathcal{B}}{\Delta q^2} (B^0 \to K^{*0} e^+ e^-)$	[0.003,1.0]	3.09 ± 0.99 [39]	2.10 ± 0.35
$P_4'(B \to K^* e^+ e^-)$	[1.0,6.0]	-0.71 ± 0.40 [40]	-0.34 ± 0.04
	[14.18, 19.0]	-0.15 ± 0.41 [40]	-0.63 ± 0.01
$P_5'(B \to K^* e^+ e^-)$	[1.0,6.0]	-0.23 ± 0.41 [40]	-0.42 ± 0.09
	[14.18, 19.0]	-0.86 ± 0.34 [40]	-0.63 ± 0.03

Direct sensitivity to the Wilson coefficients $C_{S^{(\prime)},P^{(\prime)}}^{ee}$

Pati-Salam like model

Consider the model introduced in

based on the symmetry group

SM matter fields (leptons are the 4th color of fermions)

$$F_{QL} = \begin{pmatrix} u_r & u_g & u_b & \nu \\ d_r & d_g & d_b & e \end{pmatrix} \sim (\mathbf{4}, \mathbf{2}, 0),$$

$$F_u = \begin{pmatrix} u_r^c & u_g^c & u_b^c & \nu^c \end{pmatrix} \sim (\bar{\mathbf{4}}, \mathbf{1}, -1/2),$$

$$F_d = \begin{pmatrix} d_r^c & d_g^c & d_b^c & e^c \end{pmatrix} \sim (\bar{\mathbf{4}}, \mathbf{1}, 1/2).$$

P Fileviez-Perez

M.B. Wise

[1307.6213]

 $\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_R$

This scenario can be considered a low energy limit of the
Pati-Salam modelPati-Salam modelJ. C. Pati and
A. SalamA. SalamPhys. Rev. D 10, 275Quarks and leptons are unified at low energy

The Yukawa sector

$$-\mathcal{L} = \bar{u}_R \left(Y_1^T \tilde{H}_1 + \frac{1}{2\sqrt{3}} Y_2^T \tilde{H}_2 \right) Q_L + \bar{N}_R \left(Y_1^T \tilde{H}_1 - \frac{\sqrt{3}}{2} Y_2^T \tilde{H}_2 \right) \ell_L + \bar{d}_R \left(Y_3^T H_1^{\dagger} + \frac{1}{2\sqrt{3}} Y_4^T H_2^{\dagger} \right) Q_L + \bar{e}_R \left(Y_3^T H_1^{\dagger} - \frac{\sqrt{3}}{2} Y_4^T H_2^{\dagger} \right) \ell_L + \text{h.c.}$$

Type III THDM with 4 Yukawa matrices

$$\tilde{Y}^{\ell} = (\tan\beta - 3\cot\beta) \frac{M_{\text{diag}}^{E}}{4v} + 3(\tan\beta + \cot\beta) \frac{V_{c}^{T}M_{\text{diag}}^{D}V}{4v},$$
$$\tilde{Y}^{d} = (3\tan\beta - \cot\beta) \frac{M_{\text{diag}}^{D}}{4v} + (\tan\beta + \cot\beta) \frac{V_{c}^{*}M_{\text{diag}}^{E}V^{\dagger}}{4v},$$
$$\blacksquare$$
Physical matrices

Rotation matrix

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13} \end{pmatrix}$$

For $\tan \beta \gg 1$ $s_{ij} \to 1$ $s'_{ij} \to 1$

$$\tilde{Y}^{\ell} = \frac{\tan\beta}{4v} \begin{pmatrix} m_e + 3m_b & \varepsilon & \varepsilon \\ \varepsilon & m_{\mu} + 3m_s & \varepsilon \\ \varepsilon & \varepsilon & m_{\tau} + 3m_d \end{pmatrix}$$

$$y_{ee} \gg y_{\mu\mu}, y_{\tau\tau}$$

$$\tilde{Y}^{d} = \frac{\tan\beta}{4v} \begin{pmatrix} 3m_{d} + m_{\tau} & \varepsilon & \varepsilon \\ \varepsilon & 3m_{s} + m_{\mu} & \varepsilon \\ \varepsilon & \varepsilon & 3m_{b} + m_{e} \end{pmatrix}$$

$$y_{dd} \simeq y_{bb} \gg y_{ss}$$

$$\mathcal{H}_{\text{eff}} \supset -\frac{y_{ee}y_{\mu\tau}}{M_H^2} (\bar{\tau}\mu)(\bar{e}e) - \frac{y_{\tau\tau}y_{\mu\tau}}{M_H^2} (\bar{\tau}\mu)(\bar{\tau}\tau) + \frac{y_{ee}y_{\mu\tau}}{M_A^2} (\bar{\tau}\gamma^5\mu)(\bar{e}\gamma^5e) + \frac{y_{\tau\tau}y_{\mu\tau}}{M_A^2} (\bar{\tau}\gamma^5\mu)(\bar{\tau}\gamma^5\tau)$$

 $\mathcal{O}_{LL}^{ee} = \bar{\tau}(1-\gamma_5)\mu \ \bar{e}(1-\gamma_5)e, \qquad \mathcal{O}_{RR}^{ee} = \bar{\tau}(1+\gamma_5)\mu \ \bar{e}(1+\gamma_5)e,$ $\mathcal{O}_{LR}^{ee} = \bar{\tau}(1-\gamma_5)\mu \ \bar{e}(1+\gamma_5)e, \qquad \mathcal{O}_{RL}^{ee} = \bar{\tau}(1+\gamma_5)\mu \ \bar{e}(1-\gamma_5)e,$

 $\tau^- \rightarrow \mu^- e^+ e^-$

 $\tau \to \mu \gamma$

$$C_{LL}^{ee} = C_{RR}^{ee} = \frac{y_{ee}y_{\mu\tau}}{4} \left[\frac{1}{M_H^2} - \frac{1}{M_A^2} \right], \qquad C_{LR}^{ee} = C_{RL}^{ee} = \frac{y_{ee}y_{\mu\tau}}{4} \left[\frac{1}{M_H^2} + \frac{1}{M_A^2} \right]$$

the model implies effects on the channels

$$\mathcal{B}r(\tau^- \to \mu^- e^+ e^-) < 1.8 \times 10^{-8}$$

 $\mathcal{B}r(\tau \rightarrow \mu\gamma) < 4.4 \times 10^{-8}$

Babar [hep-ex/0908.2381]

Belle [hep-ex/1001.3221]

Phenomenological correlations

$$\Delta M = M_A - M_H$$

Conclusions

- Scalars and pseudoscalar particles can <u>enhance</u> <u>dramatically the branching fraction $Br(B_s \rightarrow e^+ e^-)$.</u>
- One of the conditions for the enhancement is that the New Physics couplings should not be proportional to m_e
- <u>The type III THDM allows to fulfill this criteria</u> while satisfying the known phenomenological constraints.
- The required conditions can be accomplished within the Low energy limit of the Pati Salam model.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422

Relevant Operators

 $M_{12}^{s} = \frac{G_{F}^{2}}{12\pi^{2}}\lambda_{t}^{2}M_{W}^{2}S_{0}(x_{t})\hat{\eta_{B}}f_{B_{s}}^{2}M_{B_{s}}B_{1} + \frac{1}{2M_{B_{s}}}\Big[2C_{RR}^{\Delta B=2}\langle\mathcal{O}_{RR}^{\Delta B=2}\rangle + C_{LR}^{\Delta B=2}\langle\mathcal{O}_{LR}^{\Delta B=2}\rangle\Big].$

The THDM and $B_s \rightarrow e^+ e^-$

Non-diagonal mass matrices

$$m^{i} = Y_{1}^{i} \frac{v_{1}}{\sqrt{2}} + Y_{2}^{i} \frac{v_{2}}{\sqrt{2}}$$

After transforming to the physical basis for fermions

$$-\mathcal{L} \supset \bar{f}_L^i \left[\frac{M_{\text{diag}}^i}{v} h + \left(-\cot\beta \frac{M_{\text{diag}}^i}{v} + \frac{\Omega^i}{\sqrt{2}s_\beta} \right) (H \pm iA) \right] f_R^i + \text{h.c.}$$

$$\widetilde{Y}^{\ell} = -\cot\beta \frac{M_{\text{diag}}^{E}}{v} + \frac{\Omega^{\ell}}{\sqrt{2}s_{\beta}} = \begin{pmatrix} y_{ee} & \varepsilon & \varepsilon \\ \varepsilon & y_{\mu\mu} & \varepsilon \\ \varepsilon & \varepsilon & y_{\tau\tau} \end{pmatrix}$$

To enhance decays into pairs of electrons

$$y_{\mu\mu} \ll y_{ee}$$

$$\widetilde{Y}^{d} = -\cot\beta \frac{M_{\text{diag}}^{D}}{v} + \frac{\Omega^{d}}{\sqrt{2}s_{\beta}} = \begin{pmatrix} y_{dd} & \varepsilon & \varepsilon \\ \varepsilon & y_{ss} & y_{bs}/2 \\ \varepsilon & y_{bs}/2 & y_{bb} \end{pmatrix}$$

To avoid sizeable lepton flavour violation, and bounds from kaon-mixing

 $\varepsilon \ll y_{ij}$

For the off-diagonal couplings we have

$$\begin{split} \tilde{Y}_{sb}^{d} &= \frac{1}{4v} \left(\tan \beta + \cot \beta \right) \left(m_{\mu} s'_{23} c_{23} - m_{e} s_{23} c'_{23} \right), \\ \tilde{Y}_{bs}^{d} &= \frac{1}{4v} \left(\tan \beta + \cot \beta \right) \left(m_{\mu} s_{23} c'_{23} - m_{e} s'_{23} c_{23} \right), \\ \tilde{Y}_{\mu\tau}^{\ell} &= \frac{3}{4v} \left(\tan \beta + \cot \beta \right) \left(m_{s} s'_{23} c_{23} - m_{d} s_{23} c'_{23} \right), \\ \tilde{Y}_{\tau\mu}^{\ell} &= \frac{3}{4v} \left(\tan \beta + \cot \beta \right) \left(m_{s} s_{23} c'_{23} - m_{d} s'_{23} c_{23} \right), \end{split}$$

