Lepton Flavour Violation Searches in B decays at LHCb

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

GDR-InF Annual Workshop 1

PARIS

INTENSITY

Introduction

- Standard Model (SM) predicts the lepton universality and the conservation of the lepton flavour.
- Extending the SM to massive and oscillant neutrinos introduces the possibility of having Flavour Changing Neutral Currents.
- Charged-lepton flavour violating (cLFV) decays are highly suppressed (O(10⁻⁵⁰)) and their observation will constitute an unambiguous sign of New Physics (NP).

Theoretical models

 $b
ightarrow \, s l^+ l'^- \, {
m transitions}$

Different interaction strengths, depending on the fermions interacting, are possible

 \rightarrow interest in studying all possible lepton combination in the final state!

Relation with LFUV

→ LFUV is closely related to LFV

ightarrow Electroweak penguins mediating $b
ightarrow sl^+l^-$ transitions showed

SOURCE: https://indico.cern.ch/event/1187939/attachments/2530158/4355180/DTaunu CERNSeminar.pdf

understand these type of anomalies

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

Latest results @ LHCb

- LHCb searches for LFV in B decays
 include final state with *e* and μ or with τ
 and μ
- → No signal observed so far in any search
- Upper limits set using CLs method,
 constraining theories beyond the SM

Decay	Limit (90% C.L.) Integrated luminos		
$B^0 \rightarrow e\mu$	$1.0 \cdot 10^{-9}$	$3 {\rm fb}^{-1}$	
$B_s \to e\mu$	$5.4 \cdot 10^{-9}$	3 fb^{-1}	
$B^+ \to K^+ e^+ \mu^-$	$7.0 \cdot 10^{-9}$	3 fb^{-1}	
$B^+ \rightarrow K^+ e^- \mu^+$	$6.4 \cdot 10^{-9}$	3 fb^{-1}	
$B^0 \to K^{*0} e^{\mp} \mu^{\pm}$	$9.9 \cdot 10^{-9}$	9 fb^{-1}	
$B^0 ightarrow K^{*0} e^+ \mu^-$	$6.7 \cdot 10^{-9}$	9 fb ⁻¹	
$B^0 \rightarrow K^{*0} e^- \mu^+$	$5.7 \cdot 10^{-9}$	9 fb ⁻¹	
$B_s \to \phi e^{\mp} \mu^{\pm}$	$1.6 \cdot 10^{-8}$	9 fb ^{-1}	
$B^0 \to \tau \mu$	$1.2 \cdot 10^{-5}$	$3 {\rm fb}^{-1}$	
$B_s \to \tau \mu$	$3.4 \cdot 10^{-5}$	$3 {\rm fb}^{-1}$	
$B^+ \to K^+ \tau \mu$	$3.9 \cdot 10^{-5}$	9 fb ⁻¹	
$B^0 \rightarrow K^{*0} \tau^+ \mu^-$	$1.0\cdot 10^{-5}$	9 fb ⁻¹	
$B^0 \rightarrow K^{*0} \tau^- \mu^+$	$8.2 \cdot 10^{-6}$	9 fb ⁻¹	

RECENT RESULTS:

Search for lepton flavour violating decays $B_s^0 \rightarrow K^{*0}\mu^{\pm}e^{\mp}$ and $B_s^0 \rightarrow \phi\mu^{\pm}e^{\mp}$ submitted on Arxiv on 08/06/2022 Search for lepton flavour violating decays $B^0 \rightarrow K^{*0}\tau^{\pm}\mu^{\mp}$ submitted on Arxiv on 20/09/2022

Tommaso Fulghesu

Searches for $B \rightarrow K^*e\mu$ and $B \rightarrow \Phie\mu$: Fit

- → Run 1 + Run 2 datasets (9fb⁻¹)
- → First result ever for $B^0_{s} \rightarrow \phi \mu^{\pm} e^{\mp}$
- → Using $B \rightarrow K^{*0} J/\psi(\rightarrow \mu^+ \mu^-)$ and $B_s \rightarrow \phi J/\psi(\rightarrow \mu^+ \mu^-)$ as normalization samples
- → Kµ charge combinations treated separately

Fit on data of invariant mass distributions

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

<u>Searches for $B \rightarrow K^*e\mu$ and $B \rightarrow \Phie\mu$: Background examples</u>

https://arxiv.org/abs/2207.04005

Tommaso Fulghesu

Searches for $B \rightarrow K^* e \mu$ and $B_c \rightarrow \phi e \mu$: Results

Searches for $B \rightarrow K^* e \mu$ and $B_c \rightarrow \phi e \mu$: NP models

- → Limit set assuming **uniform phase space**
- Distributions differs significantly in NP models

$$\begin{split} & \mathsf{Scalar\ model}\ \mathsf{C_{9}}^{\mu \mathrm{e}} \neq \mathbf{0} & B\big(B^{0} \to K^{\star 0}e^{+}\mu^{-}\big) < 9.9(11.5) \times 10^{-9} \\ & B\big(B^{0} \to K^{\star 0}e^{-}\mu^{+}\big) < 8.4(10.2) \times 10^{-9} \\ & B\big(B^{0} \to K^{\star 0}e^{\pm}\mu^{\mp}\big) < 14.7(17.0) \times 10^{-9} \\ & B\big(B^{0} \to \phi e^{\pm}\mu^{\mp}\big) < 18.8(23.1) \times 10^{-9} \\ & B\big(B^{0} \to K^{\star 0}e^{-}\mu^{+}\big) < 8.0(9.5) \times 10^{-9} \\ & B\big(B^{0} \to K^{\star 0}e^{-}\mu^{+}\big) < 6.7(8.3) \times 10^{-9} \\ & B\big(B^{0} \to K^{\star 0}e^{\pm}\mu^{\mp}\big) < 12.0(13.9) \times 10^{-9} \\ & B\big(B^{0} \to \phi e^{\pm}\mu^{\mp}\big) < 16.5(20.5) \times 10^{-9} \end{split}$$

Searches for $B \rightarrow K^* \pi \mu$: Fit

Fit on data of corrected mass distribution

- → Run 1 (3fb⁻¹) + Run 2 (6fb⁻¹) dataset
- → First search for $B^0 \rightarrow K^{*0} \tau^{\pm} \mu^{\mp}$
- → Using $B \rightarrow D^{-}(\rightarrow K^{+}\pi^{-}\pi^{-})D_{s}^{+}(\rightarrow K^{+}K^{-}\pi^{+})$ as normalization sample
 - Kµ charge combinations treated separately
- → Additional challenge given by missing neutrino momentum from $T^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} (\pi^{0}) v$ in the final state

$$m_{corr}=\sqrt{p_T^2+M^2}+p_T$$

Missing momentum in the transverse plane

```
Invariant mass of the final states
```

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

https://arxiv.org/abs/2209.09846

Searches for $B \rightarrow K^* \pi \mu$: Background example

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

<u>Searches for $B \rightarrow K^* \pi \mu$: Results</u>

GDR-InF Annual Workshop 13

Tommaso Fulghesu

Searches for $B \rightarrow K^* \pi \mu$: Efficiencies

Veto on **m(K⁺µ⁻)>1885**

- → Efficiencies evaluated on MC assuming **uniform phase space**
- Allows to reweight obtained results wrt a specific model

Why not searching for $B \rightarrow K^* \tau e$?

First look at a *re* final state @ LHCb

New strategy to correct the B mass: refitting the kinematics using mass constraints

COMPARISON WITH $B^0 \rightarrow K^{*0} \tau^{\pm} \mu^{\mp}$

Reasonable mass resolution comparing electron and muon channels

 \rightarrow Feasibility of the decay search!

6200

Refitted Mass [MeV/c²]

 98.5 ± 7.3

1.502582

 $M_{DTF}(\mu)$

 5282.6 ± 2.5

 57.5 ± 6.6

1,435167

Outlook

FINAL STATES WITH $e\mu$ and $\tau\mu$

Decay	Limit (90% C.L.)	Integrated luminosity
$B^0 \rightarrow e \mu$	$1.0 \cdot 10^{-9}$	$3 {\rm fb}^{-1}$
$B_s \to e\mu$	$5.4 \cdot 10^{-9}$	$3 {\rm fb}^{-1}$
$B^+ \to K^+ e^+ \mu^-$	$7.0 \cdot 10^{-9}$	3 fb^{-1}
$B^+ \rightarrow K^+ e^- \mu^+$	$6.4\cdot 10^{-9}$	3 fb^{-1}
$B^0 \to K^{*0} e^{\mp} \mu^{\pm}$	$9.9 \cdot 10^{-9}$	9 fb^{-1}
$B^0 \rightarrow K^{*0} e^+ \mu^-$	$6.7 \cdot 10^{-9}$	9 fb^{-1}
$B^0 \to K^{*0} e^- \mu^+$	$5.7\cdot10^{-9}$	$9 {\rm fb}^{-1}$
$B_s \to \phi e^{\mp} \mu^{\pm}$	$1.6 \cdot 10^{-8}$	$9 \mathrm{fb}^{-1}$
$B^0 \to \tau \mu$	$1.2 \cdot 10^{-5}$	3 fb^{-1}
$B_s \to \tau \mu$	$3.4 \cdot 10^{-5}$	$3 {\rm fb}^{-1}$
$B^+ \to K^+ \tau \mu$	$3.9\cdot 10^{-5}$	9 fb^{-1}
$B^0 \rightarrow K^{*0} \tau^+ \mu^-$	$1.0 \cdot 10^{-5}$	$9 {\rm fb}^{-1}$
$B^0 \to K^{*0} \tau^- \mu^+$	$8.2\cdot10^{-6}$	9 fb^{-1}

DISCUSSED

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

FINAL STATES WITH er

Decay	Limit (90% C.L.)	Integrated luminosity	Experiment
$B^0 \to e^{\pm} \tau^{\mp}$	$1.6 \cdot 10^{-5}$	$772M BB (711 fb^{-1})$	Belle
$B^+ \to K^+ e^{\pm} \tau^{\mp}$	$3.0\cdot10^{-5}$	$472M BB (426 fb^{-1})$	BaBar
$B^+ \to K^+ e^+ \tau^-$	$4.3\cdot10^{-5}$	$472M BB (426 fb^{-1})$	BaBar
$B^+ \to K^+ e^- \tau^+$	$1.5\cdot 10^{-5}$	$472M BB (426 fb^{-1})$	BaBar
$B^+ \to \pi^+ e^{\pm} \tau^{\mp}$	$7.5 \cdot 10^{-5}$	$472M BB (426 fb^{-1})$	BaBar
$B^+ \rightarrow \pi^+ e^+ \tau^-$	$7.4 \cdot 10^{-5}$	$472M BB (426 fb^{-1})$	BaBar
$B^+ \to \pi^+ e^- \tau^+$	$2.0 \cdot 10^{-5}$	$472M BB (426 fb^{-1})$	BaBar
$B^0 \to K^{*0} e^+ \tau^-$?	$1.6 {\rm fb}^{-1}$	LHCb
$B^0 \to K^{*0} e^- \tau^+$?	$1.6 {\rm ~fb}^{-1}$	LHCb

Lepton Flavour Violation Searches in B decays at LHCb

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

Theoretical models

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

LFUV measurements

 $R_{\mbox{\tiny K}}$ measurements for LHCb and $\,$ B factories experiments

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

LHCb detector

→ Single arm forward spectrometer,

designed for heavy flavour physics

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

LHCb detector: reconstruction & tracking

designed for heavy flavour physics Coverage: 2 < **n** < 5 **COMPONENTS OF** THE DETECTOR ECAL HCAL SPD/PS M3 M4 M5 M2 RICH2 M1 **T**3 T2 PV FD SV TT Vertex Locator pD IP' T stations magnet TT T track VELO upstream track long track **VELO** track downstream track

 \rightarrow

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

GDR-InF Annual Workshop 23

Single arm forward spectrometer,

LHCb detector: Particle Identification (PID)

→ Single arm forward spectrometer,

designed for heavy flavour physics

https://arxiv.org/pdf/1211.6759.pdf

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

LHCb detector: Energy deposit (calorimetry)

Bremsstrahlung recovery for electrons

Single arm forward spectrometer,

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

Future prospects for LFUV studies

 Improvement of measurement uncertainties to get more precise information about these B anomalies

Lepton Flavour Violation Searches in B decays at LHCb

Selection and Normalization for $B \rightarrow K^* e \mu$ and $B \rightarrow \Phi e \mu$

- → Signal region in [4300, 6700] MeV/c²
- → PID requirements on final state hadrons and leptons to suppress double mis-ID bkg $B^{0}_{(s)} \rightarrow K^{*0}(\phi) \pi^{\pm} \pi^{\mp}$
- → Mass window of invariant mass for $K^+\pi^-$ and K^-K^+ with width respectively 100 MeV/c² and 12 MeV/c² for K^{*0} and ϕ and centered on known mass value
- → Vetoes for rejecting background for J/ ψ and ψ (2s) resonances and semileptonic cascade involving D mesons ($b \rightarrow c (\rightarrow s l'^+ \nu_{l'}) l^- \bar{\nu_l}$ decays)

→ Separate BDT for each of the two signal decay to remove combinatorial background

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

https://arxiv.org/abs/2209.09846

Selection, Normalization and Efficiencies for $B \rightarrow K^* \tau \mu$

- → Signal region in [4600, 6400] MeV/c²
- → PID requirements on final state hadrons and leptons
- → BDT to suppress combinatorial background
- BDT to suppress charmed meson contribution in T reconstruction
- Fisher discriminant using isolation information of the candidates to remove partially reconstructed bkg sources
- Specific vetoes for D⁰ mesons
- Separate BDT for each of the two signal decay to remove combinatorial background

Tommaso Fulghesu

Lepton Flavour Violation Searches in B decays at LHCb

DecayTreeFitter

Fitting the decay chain using Kalman filters (<u>https://arxiv.org/pdf/physics/0503191.pdf</u>)

• Extract the optimal set of decay tree parameters (f.e. momentum and energy) by fixing *exact* (without associated uncertainty) and *measured* (with associated uncertainties) constraints and using least square fit

PROBLEM: Missing momentum carried by the neutrino

Solution: B direction deduced from K^*e system and assumption that $\tau_{\perp} = -(K^*e)_{\perp}$

Lepton Flavour Violation Searches in B decays at LHCb

<u>B→K*τevs B→K*τμ</u>

GDR-InF Annual Workshop 30

Tommaso Fulghesu