

Test of Lepton Flavor Universality using $B_d \rightarrow D^{*-} \tau \nu$ decays at LHCb

GDR - Intensity frontiere 2022

 $\frac{G. \text{Benane}^{\dagger}}{A. \text{ Morris, P. K. Resmi, A. Romero Vidal, G. Wormser}$

[†]Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France November 3rd 2022

Introduction

 $R(D^*)$ hadronic analysis (Run 2)

Results

Conclusions

Introduction

Lepton Flavor Universality

The weak interaction in the Standard Model treats identically the three charged leptons: e, μ , and τ except for their different masses.

$$\mathbf{w}_{-} \qquad \mathbf{w}_{-} \qquad \mathbf{w}_{-}$$

This property is referred as **Lepton Flavor Universality (LFU)**.

To test the LFU hypothesis we measure

$$R(D^*)\equiv {{\cal B}(B^0 o D^{*-}{ upu^+
u_ au})\over {\cal B}(B^0 o D^{*-}{ upu^+
u_ au})}$$

 $R(D^{(*)})$ measurements \longrightarrow charged flavor changing current $b \rightarrow c \ell \nu_{\ell}$:

Previous measurements of $R(D^*)$:

BaBar (2012)

•
$$\frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \ell \nu_{\mu})}$$
 with $\ell = \mu, e$

- Belle (2015 and 2017)
 - Hadronic and leptonic au
 - One-prong hadronic $\tau \to \pi \nu_{\tau}$ and $\tau \to \rho \nu_{\tau}$
- LHCb (2015 and 2018)
 - Muonic $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$
 - 3-prong hadronic au (Run 1)

Signal & Normalisation mode

 $B^0
ightarrow D^{*-} au^+
u_{ au}$ and $au^+
ightarrow 3\pi^{\pm}(\pi^0) ar{
u}_{ au}$

- Same final states in signal and normalisation modes
- Signal mode partially reconstructed (missing neutrino $\bar{\nu}_{\tau}$)

 $B^0 \rightarrow D^{*-} 3\pi^{\pm}$

- Normalisation mode fully reconstructed
- · Helps to cancel out systematic uncertainties

Signal & Normalisation mode

 $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ and $\tau^+ \rightarrow 3\pi^{\pm}(\pi^0) \bar{\nu}_{\tau}$

- Same final states in signal and normalisation modes
- Signal mode partially reconstructed (missing neutrino $\bar{
 u}_{ au}$)

Most relevant backgrounds are: Prompt decay: $B^0 \rightarrow D^* 3\pi^{\pm}$, double-charm decay: $B^0 \rightarrow D^* DX$ where $D \rightarrow 3\pi^{\pm}$, combinatorial backgrounds.

 $B^0 \rightarrow D^{*-} 3\pi^{\pm}$

- Normalisation mode fully reconstructed
- Helps to cancel out systematic uncertainties

$$R(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$R(D^{*}) = \frac{\mathcal{B}(B^{0} \to D^{*-} \tau^{+} \nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-} \mu^{+} \nu_{\mu})} = \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-} \tau^{+} \nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-} \pi^{+} \pi^{-} \pi^{+})}}_{\mathcal{K}(D^{*})} \times \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-} \pi^{+} \pi^{-} \pi^{+})}{\mathcal{B}(B^{0} \to D^{*-} \mu^{+} \nu_{\mu})}}_{\text{External branching fractions}}$$

$$R(D^{*}) = \frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})} = \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}}_{\mathcal{K}(D^{*})} \times \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})}}_{\text{External branching fractions}}$$

We measure:

$$\mathcal{K}(\mathcal{D}^*) \equiv \frac{\mathcal{B}(\mathcal{B}^0 \to \mathcal{D}^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(\mathcal{B}^0 \to \mathcal{D}^{*-} 3\pi^{\pm})} = \frac{N_{\text{sig}}}{N_{\text{norm}}} \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \frac{1}{\mathcal{B}(\tau^+ \to 3\pi^{\pm} \overline{\nu}_{\tau}) + \mathcal{B}(\tau^+ \to 3\pi^{\pm} (\pi^0) \overline{\nu}_{\tau})}$$

$$R(D^{*}) = \frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})} = \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}}_{\mathcal{K}(D^{*})} \times \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})}}_{\text{External branching fractions}}$$
We measure:
$$\mathcal{K}(D^{*}) = \frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\pi^{+})} = \frac{N_{\text{sig}}}{N_{\text{norm}}} \frac{\mathcal{E}_{\text{norm}}}{\mathcal{E}_{\text{sig}}} \frac{1}{\mathcal{B}(\tau^{+} \to 3\pi^{\pm}\overline{\nu}_{\tau}) + \mathcal{B}(\tau^{+} \to 3\pi^{\pm}(\pi^{0})\overline{\nu}_{\tau})}$$

- $q^2 = (p_B p_{D^*})^2$ momentum transfered to the leptonic system (8 bins),
- τ^+ lifetime t_{τ} (8 bins),
- Anti- D_s^+ BDT (6 bins).

$$R(D^{*}) = \frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})} = \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}}_{\mathcal{K}(D^{*})} \times \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})}}_{\text{External branching fractions}}$$
We measure:
$$\mathcal{K}(D^{*}) = \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}}_{\mathcal{K}(D^{*})} = \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})}}_{\mathcal{K}(D^{*})} = \underbrace{\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\mu})}}_{\mathcal{K}(D^{*})}$$

$$\mathcal{K}(\mathcal{D}^*) \equiv \frac{\mathcal{L}(\mathcal{D}^* \cup \mathcal{D}^* \cup \mathcal{D}^*)}{\mathcal{B}(\mathcal{B}^0 \to \mathcal{D}^{*-} 3\pi^{\pm})} = \frac{\mathcal{L}(\mathcal{D}^*)}{\mathcal{N}_{\text{norm}}} \frac{\mathcal{L}(\mathcal{D}^*)}{\mathcal{L}_{\text{sig}}} \frac{\mathcal{L}(\mathcal{D}^*)}{\mathcal{L}(\tau^+ \to 3\pi^{\pm}\overline{\nu}_{\tau}) + \mathcal{L}(\tau^+ \to 3\pi^{\pm}(\pi^0)\overline{\nu}_{\tau})}$$

- N_{sig} from a 3D binned template fit:
 - $q^2 = (p_B p_{D^*})^2$ momemtum transfered to the leptonic system (8 bins),
 - τ^+ lifetime t_{τ} (8 bins),
 - Anti- D_s^+ BDT (6 bins).
- $N_{\rm norm}$ from an unbinned fit to $m(D^*3\pi^{\pm})$

$$R(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})} = \underbrace{\frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}}_{\mathcal{K}(D^*)} \times \underbrace{\frac{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})}}_{\text{External branching fractions}}$$
We measure:
$$R(D^*) = \underbrace{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}_{\mathcal{K}(D^*)} \qquad N_{\text{sig}} \quad \varepsilon_{\text{norm}} \qquad 1$$

$$\mathcal{L}(\mathcal{D}^*) \equiv rac{\mathcal{B}(B^0 o D^{*-} au^+
u_ au)}{\mathcal{B}(B^0 o D^{*-} 3\pi^{\pm})} = rac{\mathcal{N}_{ ext{sig}}}{\mathcal{N}_{ ext{norm}}} rac{arepsilon_{ ext{norm}}}{arepsilon_{ ext{sig}}} rac{arepsilon_{ ext{norm}}}{arepsilon(au^+ o 3\pi^{\pm} \overline{
u}_ au) + \mathcal{B}(au^+ o 3\pi^{\pm} (\pi^0) \overline{
u}_ au)}$$

- N_{sig} from a 3D binned template fit:
 - $q^2 = (p_B p_{D^*})^2$ momentum transfered to the leptonic system (8 bins),
 - τ^+ lifetime t_{τ} (8 bins),
 - Anti- D_s^+ BDT (6 bins).
- $N_{\rm norm}$ from an unbinned fit to $m(D^*3\pi^{\pm})$
- Efficiences ε_{sig} and ε_{norm} extracted from MC samples

Selection

- Initial cuts (preselection and common cuts)
- Apply four BDTs (next slides):
 - $3\pi^{\pm}$ vertex detachment BDT
 - Anti-combinatorial background BDT
 - Charged isolation BDT
 - Anti- $B^0 \rightarrow D^{*-}D^+_s X BDT$
- Remaining cuts:
 - Signal and normalisation modes

$3\pi^{\pm}$ vertex detachment BDT

Remove 'prompt' background

 Δz /uncertainty distribution of the simulated signal (red), double charm background (black) and prompt background (grey), after the initial cuts. A cut at 2σ is shown.

$3\pi^{\pm}$ vertex detachment BDT

- Remove 'prompt' background
- Training samples:
 - signal: MC $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$
 - background: $b\overline{b} \rightarrow D^{*-} \ 3\pi^{\pm}$ MC where $3\pi^{\pm}$ don't come from the τ^+ nor any D-meson

• Signal efficiency: 70%; background rejection: 90% at BDT > 0.2

Anti-combinatorial background BDT

- Remove D^{*-} and $3\pi^{\pm}$ from different hadrons
- Training samples:
 - signal: $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ MC
 - background: wrong-sign data

Signal efficiency: 85% & background rejection: 70% at BDT > 0

Charged isolation BDT

- Remove events with extra charged tracks associated with signal ones
- Training samples: $b\overline{b} \rightarrow D^{*-} 3\pi^{\pm}$ MC
 - signal: without extra tracks
 - background: with extra tracks

Signal efficiency: 80% and background rejection 77% at BDT > 0

Anti- $B^0 \rightarrow D^{*-}D^+_s X \text{ BDT}$

- Distinguish $au^+ o 3\pi^-$ from signal vs. $D^+_s o 3\pi^\pm$ X from $B^0 o D^{*-} D^+_s$ X
- Training samples:
 - signal: MC $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$
 - background: MC-truth-matched $B^0 \rightarrow D^{*-}D^+_s X$

Signal efficiency: 99.7%; background rejection: 31% at BDT > -0.2

This BDT is used in final fit

 \rightarrow

Control Samples

A simultaneous maximum likelihood binned fit to: min $m(\pi^+\pi^-)$, max $m(\pi^+\pi^-)$, $m(\pi^+\pi^+)$ and m($3\pi^{\pm}$)

 $R(D^*)$ hadronic analysis (Run 2)

Control Samples

$B \rightarrow DD_s^+(X)$ control mode

· We extract fractions that are used as constraints in the signal yield fit

Results

Signal fit - PDF

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

The total probability density function is:

$$\begin{split} \mathcal{P}_{\text{total}}(q^{2}, t_{\tau}, \text{BDT}) &= 1/N_{\text{total}} \times \{ N_{\text{sig}} \left[f_{\tau^{+} \to \pi^{+} \pi^{-} \pi^{+} \overline{\nu}_{\tau}} \mathcal{P}_{\tau^{+} \to \pi^{+} \pi^{-} \pi^{+} \overline{\nu}_{\tau}} + (1 - f_{\tau^{+} \to \pi^{+} \pi^{-} \pi^{+} \overline{\nu}_{\tau}}) \mathcal{P}_{\tau^{+} \to \pi^{+} \pi^{-} \pi^{+} \overline{\nu}_{\tau}} \right] \\ &+ f_{D^{**} \tau \nu} \mathcal{P}_{B \to D^{**} \tau^{+} \nu_{\tau}} \right] + N_{D^{0}}^{\text{same}} \left[\mathcal{P}_{B \to D^{*-} D^{0} X \text{ SV}} + f_{D^{0}}^{\nu_{1} - \nu_{2}} \mathcal{P}_{B \to D^{*-} D^{0} X \text{ DV}} \right] \\ &+ N_{D^{+}_{s}} / k \times \left[\mathcal{P}_{B^{0} \to D^{*-} D^{*}_{s}} + f_{D^{+}_{s}} \mathcal{P}_{B^{0} \to D^{*-} D^{+}_{s}} + f_{D^{+}_{s}} \mathcal{P}_{B^{0} \to D^{*-} D^{*}_{s}} \right] \\ &+ f_{D^{+}_{s1}} \mathcal{P}_{B^{0} \to D^{*-} D^{+}_{s1}} + f_{D^{**} D_{s} X} \mathcal{P}_{B \to D^{*-} D^{+}_{s}} X + f_{B_{s} \to D^{*} D^{*}_{s}} \mathcal{P}_{B^{0} \to D^{*-} D^{+}_{s}} X \right] \\ &+ N_{D^{+}_{s}} f_{D^{+}} \mathcal{P}_{B \to D^{*-} D^{+} X} + N_{B \to D^{*-} 3 \pi^{\pm} X} \mathcal{P}_{B \to D^{*-} 3 \pi^{\pm} X} \\ &+ N_{B_{1} - B_{2}} \mathcal{P}_{\text{combinatoric } B} + N_{\text{fake } D^{0}} \mathcal{P}_{\text{combinatoric } D^{0}} + N_{\text{fake } D^{*}} \mathcal{P}_{\text{combinatoric } D^{*-}} \right\}$$

- 16 templates: 13 templates from MC , 3 templates from data
- 4 free parameters , 6 gaussian constrained parameters and 6 fixed parameters

Signal fit - PDF

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

The total probability density function is:

$$\begin{split} \mathcal{P}_{\text{total}}(q^2, t_{\tau}, \text{BDT}) &= 1/N_{\text{total}} \times \left\{ N_{\text{sig}} \left[f_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu_{\tau^-}}} \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu_{\tau^-}}} + (1 - f_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu_{\tau^-}}}) \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \pi^0 \overline{\nu_{\tau^-}}} \right. \\ &+ f_{D^{**\tau\nu}} \mathcal{P}_{B \to D^{**\tau} \tau^+ \nu_{\tau^-}} \right] + N_{D^0}^{\text{same}} \left[\mathcal{P}_{B \to D^{*-} D^0 X \text{ SV}} + f_{D^0}^{\nu_{1-} \nu_{2}} \mathcal{P}_{B \to D^{*-} D^0 X \text{ DV}} \right] \\ &+ N_{D_s^+} / k \times \left[\mathcal{P}_{B^0 \to D^{*-} D_s^{*+}} + f_{D_s^+} \mathcal{P}_{B^0 \to D^{*-} D_s^+} + f_{D_{s^+}^{*+}} \mathcal{P}_{B^0 \to D^{*-} D_{s^+}^{*+}} \right] \\ &+ f_{D_{s^+1}^*} \mathcal{P}_{B^0 \to D^{*-} D_{s^+}^{*+}} + f_{D^{*+} D_s X} \mathcal{P}_{B \to D^{*-} D_s^+ X} + f_{B_s \to D^{*-} D_s^+ X} \mathcal{P}_{B^0 \to D^{*-} D_s^+ X} \right] \\ &+ N_{D_s^+} f_{D^+} \mathcal{P}_{B \to D^{*-} D^{+X}} + N_{B \to D^{*-} 3\pi^{\pm X}} \mathcal{P}_{B \to D^{*-} 3\pi^{\pm X}} \\ &+ N_{B_1 - B_2} \mathcal{P}_{\text{combinatoric } B} + N_{\text{fake } D^0} \mathcal{P}_{\text{combinatoric } D^0} + N_{\text{fake } D^*} \mathcal{P}_{\text{combinatoric } D^{*-}} \right\} \end{split}$$

- 16 templates: 13 templates from MC , 3 templates from data
- 4 free parameters , 6 gaussian constrained parameters and 6 fixed parameters

Signal fit - PDF

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

The total probability density function is:

$$\begin{split} \mathcal{P}_{\text{total}}(q^2, t_{\tau}, \text{BDT}) &= 1/N_{\text{total}} \times \left\{ N_{\text{sig}} \left[f_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}} \right. \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}} + \left(1 - f_{\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}} \right) \mathcal{P}_{\tau^+ \to \pi^+ \pi^- \pi^+ \pi^0 \overline{\nu}_{\tau}} \right. \\ &+ \left. f_{D^{**} \tau \nu} \right. \mathcal{P}_{B \to D^{**} \tau^+ \nu_{\tau}} \right] + N_{D^0}^{\text{same}} \left[\mathcal{P}_{B \to D^{*-} D^0 X \text{ SV}} + f_{D^0}^{v_1 - v_2} \right. \mathcal{P}_{B \to D^{*-} D^0 X \text{ DV}} \right] \\ &+ \left. N_{D^*_{\pi}} \right| / k \times \left[\mathcal{P}_{B^0 \to D^{*-} D^{*+}_{\pi}} + f_{D^*_{\pi}} \right] \mathcal{P}_{B^0 \to D^{*-} D^*_{\pi}} + f_{D^{*+}_{\pi^0}} \mathcal{P}_{B^0 \to D^{*-} D^*_{\pi^0}} \\ &+ \left. f_{D^{*+}_{\pi}} \right. \mathcal{P}_{B^0 \to D^{*-} D^{*+}_{\pi^+}} + f_{D^{*+} D^*_{\pi^0}} \mathcal{P}_{B \to D^{*-} D^*_{\pi^+}} + f_{D^{*+}_{\pi^0}} \mathcal{P}_{B^0 \to D^{*-} D^*_{\pi^0}} \\ &+ \left. f_{D^{*+}_{\pi^0}} \right. \mathcal{P}_{B^0 \to D^{*-} D^{++}_{\pi^0}} + \left. f_{D^{*+} D^{*+}_{\pi^0}} \mathcal{P}_{B^0 \to D^{*-} D^*_{\pi^0}} \mathcal{P}_{B^0 \to D^{*-} D^*_{\pi^0}} \mathcal{P}_{B^0 \to D^{*-} D^*_{\pi^0}} \right] \\ &+ \left. N_{D^{*+}_{\pi^0}} \right. f_{D^+} \left. \mathcal{P}_{B \to D^{*-} D^+ X} + \left. N_{B \to D^{*-} 3\pi^{\pm X}} \right. \mathcal{P}_{B \to D^{*-} 3\pi^{\pm X}} \\ &+ \left. N_{B_{1} - B_{2}} \right. \mathcal{P}_{\text{combinatoric } B} + \left. N_{\text{false } D^0} \right. \mathcal{P}_{\text{combinatoric } D^0} + \left. N_{\text{false } D^*} \right. \mathcal{P}_{\text{combinatoric } D^{*-}} \right\} \end{split}$$

- 16 templates: 13 templates from MC , 3 templates from data
- 4 free parameters , 6 gaussian constrained parameters and 6 fixed parameters

Signal fit results

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins).

Signal fit projection on q2 (left), τ lifetime (middle) and the Anti- D_s BDT (right)

Run 1 and Run 2

LHCb cumulative integrated luminosity from 2010 till 2018

Year	\mathcal{L} (fb ⁻¹)	E (TeV)	Trigger efficiency
2011	1.11	3.5	
2012	2.08	4	
2015	0.33	6.5	increased
2016	1.67	6.5	by a
2017	1.71	6.5	factor of 15%
2018	2.19	6.5	

Mass distribution of B_d for different datasets after applying normalisation cuts

• Run1 (2011+2012): $R(D^*) = 0.283 \pm 0.019 \pm 0.029$ (PRL.120.171802)

6.7% stat. 10.3% syst.

- Run2p1 (2015+2016): Blinded R(D*) (Resmi P.K et al. LHCb internal review)
- Run2p2 (2017+2018): Statistics increased by a factor > 2 w.r.t. 2016 (stat. uncertainty ~ 3%)

Results

LFU Anomalies: R(D) vs $R(D^*)$ plot

3 experiments, 6 measurements, different analysis techniques

All the measurements lie above the SM expectation

The current world-average measured R(D) and $R(D^*)$ are 3.2 σ away from the SM

Other R ratios

$$R(D) \equiv \frac{\mathcal{B}(B^0 \to D^- \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^- \mu^+ \nu_{\mu})}$$

$$R(J/\Psi) = \frac{\mathcal{B}(B_c^+ \to J/\Psi \ \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\Psi \ \mu^+ \nu_{\mu})}$$

$$R(\Lambda_c^+) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau \nu_{\tau})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu \nu_{\tau})}$$

[arxiv:1711.05623]

[arxiv:2201.03497]

[Heavy Flavor Averaging Group, HFLAV]

Results

New Physics behind LFU?

Contributions for B to D^* semileptonic decay: Left: SM, Middle: Charged Higgs, Right: Leptoquark.

There are three typical candidates to account for the and R(D) anomalies:

- Leptoquarks PRL 116, 081801 and PRD 94, 115021
- Two-Higgs-doublet models PRL 116, 081801
- Heavy vector bosons, e.g. W' JHEP 07 (2015) 142 1506.01705

Conclusions

Summary and Prospects

Summary

- $R(D^*)$ is an important analysis that may shed light on the intriguing Lepton Flavor Anomaly
- Complicated analysis because of many backgrounds due to p-p collisions and partially reconstructed signal
- Analysis of $R(D^*)$ hadronic for Run 2 part 1 (2015-2016) in final step of internal review

Prospects

- Complete Run 2 part 2 (2017-2018) analysis
- Use the full dataset Run1 + Run2 (2011-2018) to determine $R(D^*)$
 - Expected statistical uncertainty of the order of 3% (while: 6.7% for run1 only and for 5% run1+run2p1)
- R(D) and simultaneous measurements R(D) and $R(D^*)$
- Angular analysis study of $B_d
 ightarrow D^* au
 u_ au$ decay
- Study other B-mesons

Thank you!

Backups

$R(D^*)$ hadronic ($au ightarrow 3\pi u_{ au}$) Systematics (run1) [PRL 120, 171802 2018]

 $R(D^*) = 0.280 \pm 0.018(\text{stat}) \pm 0.026(\text{syst}) \pm 0.013(\text{ext})$

Source	$\frac{\delta R(D^{*-})}{R(D^{*-})}[\%]$
Simulated sample size	4.7
Empty bins in templates	1.3
Signal decay model	1.8
$D^{**} \ au \ u$ and $D^{**}_{s} \ au \ u$ feed-downs	2.7
$D_s^+ ightarrow 3\pi X$ decay model	2.5
$B \rightarrow D^{*-}D_s^+X, \ D^{*-}D^+X, \ D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B ightarrow D^{*-} 3\pi X$ background	2.8
Efficiency ratio	3.9
Normalization channel efficiency	2.0
(modeling of $B^0 \rightarrow D^{*-} 3\pi$)	
Total systematic uncertainty	9.1
Statistical uncertainty	6.5
Total uncertainty	11.9

Breakdown of relative uncertainties:

Will be improved in the next iteration of the analysis

$R(D^*)$ hadronic ($au o 3\pi u_ au$) Systematics [PRL 120, 171802 2018]

 $R(D^*) = 0.280 \pm 0.018(\text{stat}) \pm 0.026(\text{syst}) \pm 0.013(\text{ext})$

Breakdown of relative uncertainties:

Source	$\frac{\delta R(D^{*-})}{R(D^{*-})} [\%]$	Future
Simulated sample size	4.7	Produce more MC !
Empty bins in templates	1.3	
Signal decay model	1.8	
$D^{**} \ au \ u$ and $D^{**}_{s} \ au \ u$ feed-downs	2.7	Measure $R(D_1(2420)^0)$
$D_s^+ ightarrow 3\pi X$ decay model	2.5	BESIII
$B \to D^{*-}D_s^+X, \ D^{*-}D^+X, \ D^{*-}D^0X \ bkgs$	3.9	Improves with stat
Combinatorial background	0.7	
$B ightarrow D^{*-} 3\pi X$ background	2.8	Kill with $ z au - zD > 5\sigma$
Efficiency ratio	3.9	Improves with stat
Normalization channel efficiency	2.0	
(modeling of $B^0 ightarrow D^{*-} 3\pi$)		
Total systematic uncertainty	9.1	
Statistical uncertainty	6.5	
Total uncertainty	11.9	

$R(D^*)$ hadronic $(au o 3\pi u_ au)$ [PRD 97,072013 2018]

List of the individual systematic uncertainties for $R(D^*)$:

Contribution	Value in %
$\mathcal{B}(\tau^+ \to 3\pi\overline{\nu}_{\tau})/\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})$	0.7
Form factors (template shapes)	0.7
Form factors (efficiency)	1.0
au polarization effects	0.4
Other $ au$ decays	1.0
$B \rightarrow D^{**} \tau^+ \nu_{\tau}$	2.3
$B_s^0 \rightarrow D_s^{**} \tau^+ \nu_{\tau}$ feed-down	1.5
$D_s^+ \rightarrow 3\pi X$ decay model	2.5
D_{ϵ}^{+} , D^{0} and D^{+} template shape	2.9
$B \to D^{*-}D_{s}^{+}(X)$ and $B \to D^{*-}D^{0}(X)$ decay model	2.6
$D^* = 3\pi X$ from B decays	2.8
Combinatorial background (shape + normalization)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Particle identification	1.3
Normalization channel	1.0
Signal efficiencies (size of simulation samples)	1.7
Normalization channel efficiency (size of simulation samples)	1.6
Normalization channel efficiency (modeling of $B^0 \rightarrow D^{*-} 3\pi$)	2.0
Total uncertainty	9.1

Decay descr.	EventType	Generated evts [M]	Filtered evts [M]
$B^0 o D^{*-} au^+ (o 3 \pi^\pm \overline{ u}_ au) u_ au$	11160001	93.0	0.4
$B^0 ightarrow D^{*-} au^+ (ightarrow 3 \pi^\pm \pi^0 \overline{ u}_ au) u_ au$	11563020	90.0	0.3
$B^0 ightarrow D^{st -} 3 \pi^\pm$	11266018	363.0	1.0
$B^0 ightarrow D^{**} au^+ (ightarrow 3 \pi^\pm \overline{ u}_ au) u_ au$	11566431	7.0	0.09
$B^0_s ightarrow D^{st -} D^+_s X$	13996612	50.0	0.4
$B^+ ightarrow D^{**0}_s D^+_s X$	12997613	354.0	4.0
$B^0 ightarrow D^{*-}D^+_s X$	11896612	692.0	8.0
$B^0 ightarrow D^{**-} D^+_s X$	11996413	42.0	0.4
$b\overline{b} ightarrow D^{*-} 3\pi^{\pm} X$	27163970	8202.0	16.0
$b\overline{b} ightarrow D^{*-}D^{\{0,+\}}X$	27163971	427.0	2.0
Total	-	10320.0	32.0

Backups

$R(D^*)$ hadronic kinematics

Two-fold ambiguities in determining τ momentum:

$$|\vec{p}_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2)|\vec{p}_{3\pi}|\cos\theta_{\tau,3\pi} \pm E_{3\pi}\sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2|\vec{p}_{3\pi}|^2\sin^2\theta_{\tau,3\pi}}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta_{\tau,3\pi})}$$

where $\theta_{\tau,3\pi}$ is the angle between the 3π system three-momentum and the τ line of flight. Approximation: take the maximum allowed angle

$$heta_{ au,3\pi}pprox heta_{ au,3\pi}^{\max} = rcsin\left(rac{m_ au^2-m_{3\pi}^2}{2m_ au|eta_{3\pi}|}
ight),$$

The B^0 momentum is obtained similarly:

$$ert ec{p}_{B^0} ert \ = \ rac{(m_Y^2 + m_{B^0}^2) ec{p}_Y ec{q} \cos heta_{B^0,Y} \pm E_Y \sqrt{(m_{B^0}^2 - m_Y^2)^2 - 4m_{B^0}^2 ec{p}_Y ec{q}^2 \sin^2 heta_{B^0,Y}}}{2(E_Y^2 - ec{p}_Y ec{q}^2 \cos^2 heta_{B^0,Y})}$$

with

$$\theta^{\max}_{B^0,Y} \quad = \quad \arcsin\left(\frac{m^2_{B^0}-m^2_Y}{2m_{B^0}|\vec{p}_Y|}\right),$$

where *Y* represents the $D^{*-}\tau^+$ system.

Properties of charged leptons

	Particle	Mass (MeV/ c^2)	Lifetime	Main decay modes
Ì	e	$0.5109989461(31) > 6.6 \times 10^{26}$ years		None
	μ^-	105.6583745(24) 2.1969811(22) μs		$e^- ar{ u}_e u_\mu$
				$\pi^{-}\pi^{0} u_{ au}$ (25.5%)
		$ au^{-}$ 1776.86(12)	290.3(5) fs	$e^- ar{ u}_e u_ au$ (17.8%)
	$ au^-$			$\mu^- ar{ u}_\mu u_ au$ (17.39%)
				$\pi^- u_ au$ (10.8%)
				$\pi^{-}\pi^{+}\pi^{-} u_{ au}$ (9.3%)

 τ lepton Branching Ratios [PDG 2018]

Mode	BR (%)
$\tau^- o \pi^- \pi^0 \nu_{\tau}$	25.49 ± 0.09
$ au^- ightarrow e^- ar{ u}_e u_ au$	17.82 ± 0.04
$\tau^- o \mu^- \bar{\nu}_\mu \nu_\tau$	17.39 ± 0.04
$\tau^- \to \pi^- \nu_{\tau}$	10.82 ± 0.05
$\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$	9.31 ± 0.05
$\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	4.62 ± 0.05

25

D^* branching ratios

Mode	BR
$D^*(2007)^0 o D^0 \pi^0$	$(64.7 \pm 0.9)\%$
$D^*(2007)^0 o D^0\gamma$	$(35.3\pm0.9)\%$
$D^*(2010)^+ o D^0 \pi^+$	$(67.7 \pm 0.5)\%$
$D^*(2010)^+ ightarrow D^+ \pi^0$	$(30.7\pm0.5)\%$
$D^*(2010)^+ o D^+\gamma$	$(1.6\pm0.4)\%$

Part	icle	Mass (MeV/ c^2)	Lifetime
	D^+	1869.65 ± 0.05	$(1.040 \pm 0.007){ m ps}$
	D^0	1864.83 ± 0.05	$(0.4101\pm 0.0015){ m ps}$
	D_s^+	1968.34 ± 0.07	$(0.504\pm0.004) m ps$
	Λ_c^+	2286.46 ± 0.14	(0.200 ± 0.006) ps
D*(200	07) ⁰	2006.85 ± 0.05	-
D*(201	0)-	2010.26 ± 26	-

Mode	\mathcal{BR}
$B^0 o D^* (2010)^- D_s^+$	$(8.0 \pm 1.1) imes 10^{-3}$
$B^0 o D^*(2010)^- D_s^{*+}$	$(1.77\pm0.14) imes10^{-2}$
$B^0 ightarrow D^*(2010)^- D^0 K^+$	$(2.47\pm0.10\pm0.18) imes10^{-3}$
$B^0 o D^*(2010)^- D^*(2007) {\cal K}^+$	$(10.6\pm0.33\pm0.86) imes10^{-3}$
$B^0 o D^*(2010)^- \pi^+ \pi^+ \pi^- \pi^0$	$(1.67 \pm 0.27)\%$
$B^0 o D^*(2010)^- 3 \pi^+ \pi^+ 2 \pi^-$	$(4.7\pm0.9)\%$
$B^0 \to D^*(2010)^- D_{s0}(2317)^+$	$(1.5\pm0.6)\%$
$B^0 o D^*(2010)^- D_{sJ}(2457)^+$	$(9.3\pm2.2) imes10^{-3}$
$B^0 o D^*(2010)^- D_{s1}(2536)^+, \ D^+_{s1} o D^{*0}K^+ + D^{*+}K^0$	$(5.0 \pm 1.4) imes 10^{-3}$

Relevant branching ratios

Generated events 2017 and 2018

Decay descr.	EventType	Generated evts [M]	Filtered evts [M]
$B^0 \rightarrow D^{*-} \tau^+ (\rightarrow 3\pi^{\pm} \overline{\nu}_{\tau}) \nu_{\tau}$	11160001	65.0	0.3
$B^0 \rightarrow D^{*-} \tau^+ (\rightarrow 3\pi^{\pm} \pi^0 \overline{\nu}_{\tau}) \nu_{\tau}$	11563020	60.0	0.2
$B^0 \rightarrow D^{*-} 3\pi^{\pm}$	11266018	269.0	1.0
$B^0 \rightarrow D^{**} \tau^+ (\rightarrow 3\pi^{\pm} \overline{\nu}_{\tau}) \nu_{\tau}$	11566431	6.0	0.1
$B_s^0 \rightarrow D^* - D_s^+ X$	13996612	35.0	0.3
$B^+ \rightarrow D^{**0} D_s^+ X$	12997613	242.0	3.0
$B^0 \rightarrow D^* - D_s^+ X$	11896612	472.0	6.0
$B^0 \rightarrow D^{**} D_s^+ X$	11996413	29.0	0.3
$b\overline{b} \rightarrow D^* - 3\pi \pm X$	27163970	5688.0	13.0
$b\overline{b} \rightarrow D^* - D^{\{0,+\}} X$	27163971	302.0	1.0
Total	-	7170.0	26.0
Decay descr.	EventType	Generated evts [M]	Filtered evts [M]
Decay descr. $B^0 \rightarrow D^{*-} \tau^+ (\rightarrow 3\pi^{\pm} \overline{\nu}_{\tau}) \nu_{\tau}$	EventType 11160001	Generated evts [M] 93.0	Filtered evts [M] 0.4
Decay descr. $B^{0} \rightarrow D^{*-} \tau^{+} (\rightarrow 3\pi^{\pm} \overline{\nu}_{\tau}) \nu_{\tau}$ $B^{0} \rightarrow D^{*-} \tau^{+} (\rightarrow 3\pi^{\pm} \pi^{0} \overline{\nu}_{\tau}) \nu_{\tau}$	EventType 11160001 11563020	Generated evts [M] 93.0 90.0	Filtered evts [M] 0.4 0.3
Decay descr. $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\pi^{0}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}3\pi^{\pm}$	EventType 11160001 11563020 11266018	Generated evts [M] 93.0 90.0 363.0	Filtered evts [M] 0.4 0.3 1.0
Decay descr. $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\pi^{0}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}3\pi^{\pm}$ $B^{0} \rightarrow D^{**}\tau^{+}(\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau}$	EventType 11160001 11563020 11266018 11566431	Generated evts [M] 93.0 90.0 363.0 7.0	Filtered evts [M] 0.4 0.3 1.0 0.09
$ \begin{array}{l} \begin{array}{l} \mbox{Decay descr.} \\ B^0 \rightarrow D^* - \tau^+ (\rightarrow 3\pi^\pm \overline{\nu}_\tau) \nu_\tau \\ B^0 \rightarrow D^* - \tau^+ (\rightarrow 3\pi^\pm \pi^0 \overline{\nu}_\tau) \nu_\tau \\ B^0 \rightarrow D^* - 3\pi^\pm \\ B^0 \rightarrow D^* - 3\pi^\pm \\ B^0 \rightarrow D^* - \tau^+ (\rightarrow 3\pi^\pm \overline{\nu}_\tau) \nu_\tau \\ B^0_s \rightarrow D^* - D^+_s \chi \end{array} $	EventType 11160001 11563020 11266018 11566431 13996612	Generated evts [M] 93.0 90.0 363.0 7.0 50.0	Filtered evts [M] 0.4 0.3 1.0 0.09 0.4
Decay descr. $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\pi^{0}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}3\pi^{\pm}$ $B^{0} \rightarrow D^{*+}\tau^{+}(\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0}_{s} \rightarrow D^{*-}D^{+}_{s}X$ $B^{+} \rightarrow D^{*0}D^{+}_{s}X$	EventType 11160001 11563020 11266018 11566431 13996612 12997613	Generated evts [M] 93.0 90.0 363.0 7.0 50.0 354.0	Filtered evts [M] 0.4 0.3 1.0 0.09 0.4 4.0
Decay descr. $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}\tau^{+}(\rightarrow 3\pi^{\pm}\pi^{0}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0} \rightarrow D^{*-}3\pi^{\pm}$ $B^{0} \rightarrow D^{**}\tau^{+}(\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau}$ $B^{0}_{s} \rightarrow D^{*-}D^{+}_{s}X$ $B^{+} \rightarrow D^{**0}D^{+}_{s}X$ $B^{0} \rightarrow D^{*-}D^{+}_{s}X$	EventType 11160001 11563020 11266018 11566431 13996612 12997613 11896612	Generated evts [M] 93.0 90.0 363.0 7.0 50.0 354.0 692.0	Filtered evts [M] 0.4 0.3 1.0 0.09 0.4 4.0 8.0
$ \begin{array}{l} \begin{array}{l} \mbox{Decay descr.} \\ \hline B^0 \to D^{*-} \tau^+ (\to 3\pi^{\pm} \overline{\nu}_{\tau}) \nu_{\tau} \\ \hline B^0 \to D^{*-} \tau^+ (\to 3\pi^{\pm} \pi^0 \overline{\nu}_{\tau}) \nu_{\tau} \\ \hline B^0 \to D^{*-} 3\pi^{\pm} \\ \hline B^0 \to D^{**} \tau^+ (\to 3\pi^{\pm} \overline{\nu}_{\tau}) \nu_{\tau} \\ \hline B^0_s \to D^{*-} D^+_s X \\ \hline B^0 \to D^{*-} D^+_s X \end{array} $	EventType 11160001 11563020 11266018 11566431 13996612 12997613 11896612 11996413	Generated evts [M] 93.0 90.0 363.0 7.0 50.0 354.0 692.0 42.0	Filtered evts [M] 0.4 0.3 1.0 0.9 0.4 4.0 8.0 0.4
$ \begin{array}{l} \hline Decay \ descr. \\ B^0 \rightarrow D^* - \tau^+ (\rightarrow 3\pi^{\pm}\overline{\nu}_{\tau})\nu_{\tau} \\ B^0 \rightarrow D^* - \tau^+ (\rightarrow 3\pi^{\pm}\pi^0\overline{\nu}_{\tau})\nu_{\tau} \\ B^0 \rightarrow D^* - 3\pi^{\pm} \\ B^0 \rightarrow D^* - 3\pi^{\pm} \\ B^0 \rightarrow D^* - p_s^+ X \\ B^+ \rightarrow D^{**0} p_s^+ X \\ B^+ \rightarrow D^{**0} p_s^+ X \\ B^0 \rightarrow 0^* - p_s^+ X \\ B^0 \rightarrow 0^* - p_s^+ X \\ B^0 \rightarrow 0^* - 2x \\ b\overline{b} \rightarrow D^* - 3\pi^{\pm} X \end{array} $	EventType 11160001 11563020 11266018 11566431 13996612 12997613 11896612 11996413 27163970	Generated evts [M] 93.0 90.0 363.0 7.0 50.0 354.0 692.0 42.0 8202.0	Filtered evts [M] 0.4 0.3 1.0 0.09 0.4 4.0 8.0 0.4 16.0
$ \begin{array}{l} \hline Decay \ descr. \\ \hline B^0 \rightarrow D^* - \tau^+ (\rightarrow 3\pi^\pm \overline{\upsilon}_\tau) \nu_\tau \\ \hline B^0 \rightarrow D^* - \tau^+ (\rightarrow 3\pi^\pm \pi^0 \overline{\upsilon}_\tau) \nu_\tau \\ \hline B^0 \rightarrow D^* - \pi^+ (\rightarrow 3\pi^\pm \overline{\upsilon}_\tau) \nu_\tau \\ \hline B^0 \rightarrow D^* - \pi^+ (\rightarrow 3\pi^\pm \overline{\upsilon}_\tau) \nu_\tau \\ \hline B^0 \rightarrow D^* - D_s^\pm X \\ \hline B^+ \rightarrow D^{**0} D_s^\pm X \\ \hline B^0 \rightarrow D^* - D_s^\pm X \\ \hline B^0 \rightarrow D^* - D_s^\pm X \\ \hline B^0 \rightarrow D^* - 3\pi^\pm X \\ \hline b\overline{b} \rightarrow D^* - D_s^{\{0,+\}} X \end{array} $	EventType 11160001 11563020 11266018 11566431 13996612 12997613 11896612 11996413 27163970 27163971	Generated evts [M] 93.0 90.0 363.0 7.0 50.0 354.0 692.0 42.0 8202.0 427.0	Filtered evts [M] 0.4 0.3 1.0 0.09 0.4 4.0 8.0 0.4 16.0 2.0

Selection efficiencies

Cut	Absolute efficiencies			Cumulative efficiencies			
	$3\pi\overline{\nu}_{T}$	$3\pi\pi^0\overline{\nu}_{\tau}$		$3\pi\overline{\nu}_{\tau}$	$_{3\pi\pi}^{0}\overline{\nu}_{\tau}$		
Initial selection							
LO	89.51	86.60	89.08	89.51	86.60	89.08	
Hlt1	89.76	87.32	90.92	87.14	83.88	88.02	
H1t2	79.90	77.31	90.33	73.25	69.02	85.10	
$PV(\overline{D}^0) = PV(\tau^+)$	69.76	65.73	79.94	69.76	65.73	79.94	
totCandidates = 1	60.89	52.22	71.97	58.06	49.87	67.75	
$[vtx_z(\tau^+) - vtx_z(PV)]/error > 10$	71.66	66.59	78.60	57.01	48.29	62.64	
nSPDHits < 450	72.24	67.78	83.97	56.37	47.56	61.99	
	Signal se	lection					
$m(D^{*-}) - m(K^{-}\pi^{+}) \in [143, 148] \text{ MeV}/c^{2}$	94.63	93.98	-	94.63	93.98	-	
$m(K^- \pi^+) \in [1840, 1890] \text{ MeV}/c^2$	97.36	97.39	-	92.28	91.70	-	
$m(3\pi) < 1825 \mathrm{MeV}/c^2$	98.24	98.77		90.73	90.68	-	
$m(B^0) < 5100 {\rm MeV}/c^2$	99.29	99.03	-	90.46	90.27	-	
$q^2 \in [0, 12] \text{ GeV}^2/c^4$	97.52	97.22		88.74	88.53	-	
combinatorial BDTD > 0	80.37	76.71	-	74.72	71.89	-	
$[vtx_{z}(\tau^{+}) - vtx_{z}(B^{0})]/error > 2$	99.81	99.78		74.72	71.89	-	
isolation $BDT > 0$	87.85	83.86	-	67.42	62.41	-	
anti D_e^+ BDT > -0.2	98.30	86.10	-	67.12	54.87	-	
PID	76.23	78.86	-	-	-	-	
Normalisation selection							
$[\operatorname{vtx}_Z(\overline{D}^0) - \operatorname{vtx}_Z(\tau^+)]/\operatorname{error} > 4$	-	-	94.30	-	-	94.30	
$m(D^* 3\pi^{\pm}) \in [5150, 5400] \text{ MeV}$	-	-	97.87	-	-	93.32	
$m(D^{*-}) - m(\overline{D}^{0}) \in [143, 148] \text{ MeV}$	-	-	94,97	-	-	89.04	
combinatorial BDTD > 0	-	-	81.37	-	-	74.19	
isolation BDT > 0	-	-	88.33	-	-	66.94	
PID	-	-	73.96	-	-	-	

Signal fit templates

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins). There are 16 templates, 13 of them come from MC and three from data. The latter ones are combinatorial B, D^0 and D^* events. The templates are grouped into the 12 following categories, due to similar shapes:

- $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ the signal; includes $\tau^+ \rightarrow 3\pi^- \overline{\nu}_{\tau}$ and $\tau^+ \rightarrow 3\pi^{\pm} \pi^0 \overline{\nu}_{\tau}$
- $B^0 \rightarrow D^{**-} \tau^+ \nu_{\tau}$ excited D^{*-} states
- $B^0 \to D^{*-} D_s^{+(*)} \text{includes } B^0 \to D^{*-} D_s^+, \ B^0 \to D^{*-} D_s^{**}, \ B^0 \to D^{*-} D_{s0}^{*+}$ and $B^0 \to D^{*-} D_{s1}^+$
- $B \rightarrow D^{**-} D_s^+ X$
- $B_s^0 \rightarrow D^{*-} D_s^+ X$
- $B \rightarrow D^{*-}D^+X$
- $B \rightarrow D^{*-} 3\pi^{\pm} X$

Signal fit templates

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to q^2 (8 bins), decay time of the τ^+ -candidate (8 bins), t_{τ} , and the anti- D_s^+ BDT (6 bins). There are 16 templates, 13 of them come from MC and three from data. The latter ones are combinatorial B, D^0 and D^* events. The templates are grouped into the 12 following categories, due to similar shapes:

- $B \rightarrow D^{*-}D^{0}X$ SV, 'Same Vertex' where all 3 pions come from D^{0}
- B→ D^{*-}D⁰X DV, 'Different Vertices' where at least 1 of the 3 pions comes from the D⁰ vertex and the other(s) from a different vertex, e.g. the slow pion from D^{*-} is reconstructed as coming from the D⁰
- combinatorial B^0 whose template is made from the collision data with the $D^{*\pm}$ of the same sign as the $3\pi^{\pm}$ system (*i.e.* wrong sign data w.r.t. the signal)
- combinatorial D⁰
- combinatorial D^{*-} but genuine D⁰

- 2016 (real data + MC) dataset (reproduced as a cross-check)
- 2017-2018 (real data + MC) dataset (new production)

Year	2016	2017	2018
# MC event types	14	13	13
# MC events [M]	21.8	39.8	49.4
# data events [M]	7	7.2	9.1

In total, we generate $\mathcal{O}(100M)$ events.

Normalisation fit result

Fit results Sweight fit result at the $D^*3\pi^{\pm}$ mass peak using 2018 dataset

year	$N_{ m norm}$	$N_{ m norm}$ expected	$N_{ m bkg}$	$N_{ m bkg}$ expected	$N_{ m norm}/N_{ m bkg}$
2016	$26~434\pm190$	-	1446 ± 107	-	18.28
2017	31200 ± 207	27 067	2002 ± 117	1 481	15.58
2018	37137 ± 225	34 664	2170 ± 126	1 896	17.11

Backups

B^0 and au vertex error reweighting

- Main background Prompt decay where $3\pi^{\pm}$ system comes directly from the B^0 vertex.
- To suppress this background we require a separation between the B^0 and au vertex

$$\Delta z = vtx_z(\tau^+) - vtx_z(B^0) \qquad \sigma_{\Delta_z} = \sqrt{vtx_{err\ z}(\tau^+)^2 + vtx_{err\ z}(B^0)^2}$$

- Difference between 'run2p1' and 'run2p2' MC: B⁰ vertex error in the beam direction
 - Due to reconstruction algorithms (applied for data but not for MC)
 - Need to apply simultaneous gradient-boosted weight for the B^0 and au vertex error

 B^0 vertex_z error from sweighted data and $D^*3\pi^{\pm}$ MC 2018 sample