Form factors in $b \rightarrow s$ transitions

GDR-InF annual workshop – 03/11/2022

Méril Reboud

Based on Amhis, Bordone, MR 2208.08937

ш

Technische Universität München

I. Introduction

Form factors in $b \rightarrow s \ell \ell$

Form factors in $b \rightarrow s \ell \ell$

$$
\mathcal{H}(b \to s\ell\ell) = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)
$$
\n
\n
$$
\mathcal{H}(b \to s\ell\ell) = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)
$$
\n
\n
$$
\mathcal{H}_{\mu}(k,q) = i \int d^4x \, e^{iq \cdot x} \langle \bar{M}(k)|T\{\mathcal{J}_{\mu}^{\text{em}}(x), \mathcal{C}_i\mathcal{O}_i\} | \bar{B}(q+k) \rangle
$$
\n
\n
\n
$$
\mathcal{H}_{\mu}(k,q) = i \int d^4x \, e^{iq \cdot x} \langle \bar{M}(k)|T\{\mathcal{J}_{\mu}^{\text{em}}(x), \mathcal{C}_i\mathcal{O}_i\} | \bar{B}(q+k) \rangle
$$
\n
\nNon-local form-factors

→ Not today, but same methods are used [Gubernari, MR, van Dyk, Virto '22]

Local form factors

- **2 main approaches**
	- Lattice QCD → most feasible at **large q²**
	- **Light-cone sum rules → most feasible at small** q^2
- 2 possible LCSRs:
	- Light meson LCDA [recent works: Bharrucha, Straub, Zwicky '15; Khodjamirian, Rusov '17]
	- **B meson LCDA** [recent works: Khodjamirian, Mannel, Pivovarov, Wang '10; Gubernari, Kokulu, van Dyk '18]
	- → **Interpolation** in the physical range

Form Factor Parametrization

$$
\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_{\mu} b_L | \bar{B}(q+k) \rangle
$$

Analyticity properties of the form factors:

- Pole due to **bs bound state**
- **Branch cut** due to on-shell pair production

Form Factor Parametrization

Conformal mapping [Boyd, Grinstein, Lebed '97]

$$
z(s) \equiv \frac{\sqrt{s_+ - s} - \sqrt{s_+ - s_0}}{\sqrt{s_+ - s} + \sqrt{s_+ - s_0}}
$$

Simplified Series expansion [Bourrely, Caprini, Lellouch, '08; Bharucha, Feldmann, Wick '10]

$$
\mathcal{F}_{\lambda}^{(T)}(q^2) = \frac{1}{q^2 - m_{B_s}^2} \sum_{k=0}^{N} \alpha_{\lambda,k} z^k
$$

N = 2 is enough to provide an **excellent description of the data** (p-values > 70%)

Local form factors

[Gubernari, MR, van Dyk, Virto '22]

0.70

 0.65

 0.60

 $f_{\pm}^{B\to K}(q^2)$ $^{0.55}_{0.59}$

 $P(q^2)$. 0.40 0.35

 0.30

Combined fit to LCSR and lattice QCD Inputs:

- \bullet B \rightarrow K:
	- [HPQCD'17; FNAL/MILC '17]
	- [Khodjamiriam, Rusov '17]
- \bullet B \rightarrow K^{*}:
	- [Horgan, Liu, Meinel, Wingate '15]
	- [Gubernari, Kokulu, van Dyk '18]
- \bullet B_s $\rightarrow \varphi$:
	- [Horgan, Liu, Meinel, Wingate '15]
	- [Gubernari, van Dyk, Virto '20]

What about the **model uncertainties**? What if we only have LQCD?

Méril Reboud - $20/10/2022$ Bharucha, Straub, Zwicky '15] 8

II. Dispersive bound

Dispersive bound

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

+ other diagrams: loops, quark and gluon condensates...

● Unitarity gives **shared bounds** for **all the b → s processes**: (schematically)

$$
1 > 2 \int_{(m_B + m_K)^2}^{\infty} \left| \frac{\hat{\mathcal{F}}_X^{B \to K}(t)}{\sum_{k \to k \text{ row}}^2} \right|^2 dt + 2 \int_{(m_B + m_{K^*})^2}^{\infty} \left| \frac{\hat{\mathcal{F}}_X^{B \to K^*}(t)}{\hat{\mathcal{F}}_X^{B \to K}(t)} \right|^2 dt + \dots
$$

Simple case: $B \rightarrow K$

- The branch cut starts **at** the pair production threshold
- The monomial z^k are **orthogonal** on the unit circle

$$
\hat{\mathcal{F}}_X^{B\to K} = \sum_{k=0}^N a_{X,k} z^k
$$

$$
\int_{(m_B + m_K)^2}^{\infty} \left| \hat{\mathcal{F}}_X^{B\to K}(t) \right|^2 dt = \sum_{k=0}^N |a_{X,k}|^2
$$

Less simple case, e.g. $\Lambda_b \rightarrow \Lambda^*$

- The first branch cut (BK) starts **before** the pair production threshold
- Introduce orthonormal polynomials of the **arc of the unit circle**

$$
\hat{\mathcal{F}}_X^{B\to K} = \sum_{k=0}^N a_{X,k} p_k(z)
$$

$$
\int_{(m_B + m_K)^2}^{\infty} \left| \hat{\mathcal{F}}_X^{B\to K}(t) \right|^2 dt = \sum_{k=0}^N |a_{X,k}|^2
$$

III. Numerics

Note: I will continue with $\Lambda_b \rightarrow \Lambda^*$, see [Blake, Meinel, Rahimi, van Dyk 2205.06041] for $\Lambda_b \rightarrow \Lambda$

Fit results

- Inputs:
	- **LQCD** [Meinel, Rendon '21]
	- no LCSR → use **SCET relations** [Descotes-Genon, M. Novoa-Brunet '19]

 $f_{\perp'}(0) = 0 \pm 0.2$, $g_{\perp'}(0) = 0 \pm 0.2$, $h_{\perp'}(0) = 0 \pm 0.2$, $\tilde{h}_{\perp}(0) = 0 \pm 0.2$, $f_{+}(0)/f_{\perp}(0) = 1 \pm 0.2$, $f_{\perp}(0)/g_{0}(0) = 1 \pm 0.2$, $g_{\perp}(0)/g_{+}(0) = 1 \pm 0.2$, $h_{+}(0)/h_{\perp}(0) = 1 \pm 0.2$, $f_{+}(0)/h_{+}(0) = 1 \pm 0.2$,

 $O(a_s/\pi, \Lambda_{\text{OCD}}/m_b)$

• Use an **under-constrained fit** (N>1) and allows for saturation of the dispersive bound

 \rightarrow The uncertainties are model-independent, increasing the expansion order does not change their size

Phenomenology

- Uncertainties are large but **under control** and **systematically improvable**
- LHCb analysis is **ongoing**

Conclusion

- Local form factors are the **main source of uncertainties** in $b \rightarrow s$ observables
- Dispersive bounds allow:
	- A control of the uncertainties in the z-expansions
	- **Systematically reducible** uncertainties, even in the absence of new LQCD/LCSR results!

Back-up

Resonance structure in $\Lambda_b \rightarrow J/\psi \rho K$

- The resonance structure way richer than the one in $B \to J/\psi \pi K$
- Λ (1520) is the narrowest observed resonance
- Narrow-width approximation can be applied

[[]LHCb 1507.03414]

Comparison with the literature: BR

Branching ratio changes with respect to [Descotes-Genon, M. Novoa-Brunet '19] \rightarrow this is due to the Quark Model they used for the form factors, which is in large tension both with SCET relations and LQCD results

Comparison with the literature: A_FB

• The forward-backward asymmetry is not impacted

