

2nd part: Using $B^0 \to K_S^0 \pi^+ \pi^- \gamma$ decays to study the performance of an upgrade to the Belle II Vertex Detector

Petros Stavroulakis, on behalf of the IPHC Strasbourg team

GDR-InF annual workshop at Lyon, November 2nd 2022

SuperKEKB & the Belle II detector

> SuperKEKB: the "brightest" e^+e^- collider:

- Current peak instantaneous luminosity: $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \text{ (WR)}$
- Target instantaneous luminosity: 6.5 × 10³⁵ cm⁻²s⁻¹ (~30 times larger than at KEKB) achieved by nano-beam scheme
- Already at 427 fb⁻¹ \approx BaBar dataset (target: 50 ab⁻¹)

SuperKEKB & the Belle II detector

- Extremely high luminosity poses experimental challenge: beam-induced backgrounds that generate parasitic particles degrading detector performance
- Central Drift Chamber (CDC) and Vertex Detector (VXD) struggle to keep up with increased hit rate (see last year's talk by C. Finck)
- Opportunity for detector upgrade during 2026 27 (Long Shutdown 2)

(with large uncertainties...)

Vertex detector upgrade

- ✓ Cope with increased hit rate (or occupancy) by reducing pixel size (30 to 40 µm pixel pitch) and integration time (≤ 100 ns)
- Is the sensitivity of Belle II to new physics improved?
- > Are the upgraded geometries optimised for physics?

Benchmark measurement

Observable:
$$\mathcal{A}_{CP}(\Delta t) = \frac{\Gamma(\bar{B}^0(\Delta t) \to f_{CP}) - \Gamma(B^0(\Delta t) \to f_{CP})}{\Gamma(\bar{B}^0(\Delta t) \to f_{CP}) + \Gamma(B^0(\Delta t) \to f_{CP})}$$

Measurement requires:

> Efficient reconstruction of f_{CP}

Great resolution on Δt (~ ps) between two B meson decays (Δt resolution $\propto \Delta z$ resolution)

Capacity to determine B^0 flavor (B^0 or \overline{B}^0)

Decay channel

- $\succ B^0(\overline{B}^0) \rightarrow K_S^0 \pi^+ \pi^- \gamma$ decays contain charge particle **tracks** and particle decay **vertices** ⇒ good channel to **benchmark** performance of vertex detector
- > Phenomenologically, such decays contain $b \rightarrow s \gamma$ transitions and probe BSM physics via a time-dependent CP asymmetry (**TDCPA**) measurement

 $\mathcal{B}r\big(B^0(\bar{B}^0)\to K^0_S\,\pi^+\pi^-\gamma\big)\sim 10^{-5}$

Simulation of signal events

- **I. Generation** of $\Upsilon(4S)$ events each containing the illustrated B_{sig}^0 decay $(B^0(\overline{B}^0) \to K_S^0 \pi^+ \pi^- \gamma)$ and a generic B_{tag}^0 decay
- **II. Simulation** for VXD, 5 layer VTX & 7 layer VTX detector geometries <u>with</u> beam background hits overlaid (phase 3)
- **III. Reconstruction** of *signal-* and *tag-*side B^0 's from final state particles and V0's (i. e. K_S^0)
- ➤ <u>Analysis goal</u>: compare performances of detector geometries in Monte Carlo simulations of $B^0 → K_S^0 \pi^+ \pi^- \gamma$ decays
- ➢ Focus on reconstruction efficiency and vertex resolution of B^{0} 's and K_S^{0} 's

3 available vertex detector geometries

- $\geq B^0$ efficiency mainly driven by K_S^0 efficiency
- VTX geometries **outperform** VXD at expected level of beam background

Reconstruction Efficiency (at nominal background)

02/11/2022

Vertex Resolution

e.g. Fit for 5 layer geometry

➤ The Δt resolution is then quoted as the weighted sum of the sigmas obtained from the fit:

$$\sigma_{\Delta t} = \sum_{i} w_i \sigma_i \ , i = 1, 2, 3$$

 w_i : integral fraction of *i*-th Gaussian

➢ For all geometries:

Detector Geometry	Δ <i>t</i> Resolution (ps)			
VXD	1.09 ± 0.06			
VTX 5 layers	0.86 ± 0.03			
VTX 7 layers	0.90 ± 0.04			

* $\Delta t \ residual = \Delta t_{reconstructed} - \Delta t_{true}$

Conclusions & outlook

- ✓ The A_{CP} measurement in the $B^0 \to K_S^0 \pi^+ \pi^- \gamma$ channel can **benefit** greatly from improvements to the Belle II vertex detector
- ✓ The proposed VTX **improves** on projected performances of the VXD at phase 3 luminosity, in terms of Δt resolution and reconstruction efficiency of signal B^{0} 's and K_{S}^{0} 's
- ✓ One of several benchmark studies (to be) completed in preparation for the Conceptual Design Report of the VTX to be written by the end of 2022

➤ Outlook:

- Calibration of the Flavor tagger and Resolution function parameters to be used in the future analysis
- Start working on the analysis itself

Thank You!

Questions?

Backup

Current vertex detector geometry

VXD = PXD + SVD

Total material budget: 3.2 % X₀

Layer no.	1	2	3	4	5	6
Radius (mm)	14.2	21.8	39.0	80.0	104.0	135.2
# Ladders	8	12	7	10	12	16
# Sensors per ladder	2	2	2	3	4	5

Vertex detector upgrade geometry

VTX 5 layers

Total material budget: 1.1 % X₀ (over-optimistic)

Layer no.	1	2	3	4	5
Radius (mm)	14.1	22.1	69.1	89.5	140.0
# Ladders	6	10	14	18	26
# Sensors per ladder	4	4	12	16	24

Vertex detector upgrade geometry

VTX 7 layers

Layer no.	1	2	3	4	5	6	7
Radius (mm)	14.1	22.1	35.1	60.1	90.1	115.0	135.0
# Ladders	6	10	14	12	18	22	26
# Sensors per ladder	4	4	8	12	16	20	24

> Moving the 3rd layer:

Reconstruction Efficiency - BGx1

Vertex Resolution

Vertex Resolution

$$\sigma_{\Delta t} = \sum_{i} w_i \sigma_i = w_1 \sigma_1 + w_2 \sigma_2 + w_3 \sigma_3 = \frac{1}{I_{\text{tot}}} (I_1 \sigma_1 + I_2 \sigma_2 + I_3 \sigma_3)$$

with: $I_i = N_i \sigma_i \cdot \sqrt{2\pi}$ and $I_{tot} = \sum_i I_i = \sqrt{2\pi} \cdot (\sum_i N_i \sigma_i)$

where N_i is the normalization and σ_i the std deviation of the *i*-th Gaussian

$$\sigma_{(\sigma_{\Delta t})} = \sqrt{\sum_{i} (w_i \sigma_{\sigma_i})^2} = \frac{1}{I_{\text{tot}}} \sqrt{I_1^2 \sigma_{\sigma_1}^2 + I_2^2 \sigma_{\sigma_2}^2 + I_3^2 \sigma_{\sigma_3}^2}$$