Overview of Current and Future Experiments at the Intensity Frontier

Benjamin Audurier (CEA) and Dorothea vom Bruch (CPPM)

Established by the European Commission

Experiments at colliders

- LHCb experiment at CERN
- Belle II experiment at SuperKEKB
- Future colliders

2019/1

2021/1

2023/1

2025/1

2027/1

2029/1

2031/1

Integrated luminisoty [ab⁻¹]

3

LHC schedule

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

Source: LHC long term schedule

The LHCb experiment

General purpose detector in the

forward region specialized in beauty and charm physics

bb production

LHCb commissioning status

CERN courier article about LHCb Upgrade II to appear in November...

- Precision timing for tracking and PID
- Extreme radiation hardness
- New detectors
- Full heterogeneous software trigger

Unprecedented sensitivity for flavor physics

8

- ECAL2 with 20 ps time resolution from dedicated ASIC
- Tracking detectors
 - Upgrade of UT detector with Monolithic Active Pixel Sensors (MAPS)
 - Micro-channel cooling for tracking detectors
- Data acquisition at 800 Gbit/s
 - Electronics card to receive data from sub-detectors and transfer them to DAQ farm
- Fully heterogeneous real-time analysis at 200 Tbit/s
 - 2nd stage High Level Trigger (HLT2) processed on co-processors (such as GPUs), HLT1 already processed on GPUs in Run 3

HLT2 compute

Future circular collider (FCC)

	√s	L /IP (cm ⁻² s ⁻¹)	Int. L /IP(ab ⁻¹)	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top	230 x10 ³⁴ 28 8.5 1.5	75 5 2.5 0.8	2-4 experiments Total ~ 15 years of operation
pp FCC-hh	100 TeV	5 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <mark>s_{NN}</mark> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
ep Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	√s _{eN} = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

International Linear Collider (ILC)

Energy	Reaction	Physics Goal
91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak
160 GeV	${\rm e^+e^-} \rightarrow WW$	ultra-precision W mass
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings
350–400 GeV		top quark mass and couplings precision W couplings precision Higgs couplings
500 GeV		precision search for Z' Higgs coupling to top Higgs self-coupling search for supersymmetry search for extended Higgs states
700–1000 GeV	$ e^+e^- \rightarrow \nu \bar{\nu} hh e^+e^- \rightarrow \nu \bar{\nu} VV e^+e^- \rightarrow \nu \bar{\nu} t\bar{t} e^+e^- \rightarrow t\bar{t}^* $	Higgs self-coupling composite Higgs sector composite Higgs and top search for supersymmetry

Source: ILC TDR

250 GeV is the baseline for initial implementation

but considerations for future options (Z pole and energy upgrades) now officially encouraged

Complementarity of FCC and ILC

- FCC-ee: largest luminosity
 - Electroweak physics
 - Flavor physics
 - Low-energy Higgs physics
 - Top mass and electroweak couplings
- ILC: largest energy
 - Top physics
 - High-energy Higgs physics
 - BSM physics

Experiments at accelerators

Charged Lepton Flavor Violation

- Branching ratio suppressed to below 10⁻⁵⁴ in the standard model
- Mu3e at PSI: $\mu \rightarrow eee$
 - \circ 10^8 10^9 muons on target, <u>TDR</u>, BR sensitivity to $10^{\text{-16}}$
- MEG-II at PSI: $\mu \rightarrow e\gamma$
 - \circ 10⁷ 10⁸ muons/s on target, <u>Design of MEG II</u>, BR sensitivity to 10⁻¹⁴
- $\mu \rightarrow e \text{ near nuclei}$
 - \circ Mu2e at Fermilab: Aluminum target, 10¹⁷ muons/year, BR sensitivity to 10⁻¹⁷
 - COMET at J-PARC, Aluminum target, 10¹⁶ muons on target in phase 1, <u>TDR</u>, final BR sensitivity to 10⁻¹⁶

Muon anomalous magnetic moment

- Fermilab g-2
 - \circ <u>2021 results</u> confirm long-standing discrepancy between theory and experiment at 4.2 σ
- E-34 at J-PARC

arXiv:2206.06582

- Will measure g-2 and electric dipole moment (EDM)
- Different technique than Fermilab experiment, using ultracold muons
- Ongoing work in theory community to understand hadronic vacuum polarization contribution
 - Recent lattice calculations of hadronic vacuum polarization significantly reduce tension

Source: FNAL news

Neutron Electric Dipole Moment (nEDM)

- n2EDM experiment being installed at Paul Scherrer Institute (PSI), TDR
- Use Ultracold Neutron Source (UCN) -> dedicated talk in this session
- Expected sensitivity: 10⁻²⁷ e cm in 500 days of data-taking, one order of magnitude improvement
- nEDM violates P, T and CP symmetry -> Tight constraints on BSM models

Source: Wikipedia nEDM

Talk by W. Saenz at 2020 annual workshop

MESA accelerator in Mainz

• High intensity beam (150 μ A) of 155 MeV electrons

• P2 experiment

- Measurement of weak mixing angle with 0.1% precision
- MAGIX:
 - Proton form factor measurement at lowest impulse transfer rate -> proton radius puzzle
- BDX: Beam dump experiment for dark matter searches
 - Mass sensitivity in MeV range with 10²² electrons on target

SHiP beam dump experiment @ SPS

- Sensitive to particles in MeV GeV range
- Very weakly interacting long-lived particles
- Heavy neutral leptons, dark photons, light scalars, pseudoscalars (ALPs), supersymmetric partners
- 10¹⁹ protons per year

Long-lived particles produced in LHC collisions

- FASER, <u>TDR</u>
 - 480 m downstream of ATLAS experiment
 - \circ 10¹⁶ pions / year
- CODEX-b, <u>EOI</u>
 - 25 m from LHCb experiment
 - Masses from MeV to TeV probed
- MATHUSLA, <u>LOI</u>
 - Above CMS detector
 - Masses above GeV range

arXiv:1911.00481

Grenoble hybrid magnet

- Axion search based on photo-conversion with interaction with static magnetic field.
- Three experimental approaches: holoscopes, helioscopes, lab experiments
- Many facilities to measure axions in the future:
 - MADMAX: tests performed with CERN's Morgot magnet, full detector to be built in the coming years
 - JURA: evolution of OSQAR + ALPS @CERN 0
 - GraHal: based around the Grenoble hybrid magnet which will be operant in 2023 \bigcirc

Conclusions

- Intensity frontier is very active field of research
- Expect LHCb Run 3 and Belle II results within the next years
- Upgrade program at colliders up to ~2030
- R&D for FCC and ILC continuing in parallel
- Wide range of smaller experiments with high intensities
- French contributions mostly in nEDM, ALP and long-lived particle searches

