

Halime Sazak LPC, Clermont

GDR-InF Annual Workshop 2022 2 – 4 November

CKM angle γ in open charm B decays

Physics motivation – CKM matrix and Unitarity Conditions

Analysis

- CKM angle γ measurement in B_s^0 –
- CKM angle γ measurement in $B^- \rightarrow DK^{*-}(K^-\pi^0)$ decay
- Conclusions

$$\rightarrow \overline{D}^{(*)0}\phi(KK)$$
 decay

Halime Sazak (LPC Clermont)

In order to verify the unitarity of the CKM matrix

- Complex phase $\gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$ which is source of CP violation can be measured from the processes mediated
 - Only angle accessible at Tree-level (direct measurement)
 - theoretically clean
 - "Standard Candle" of the Standard Model
 - Interference between $b \rightarrow c$ and $b \rightarrow u$ quark transitions
- Precise measurements of the magnitudes of the CKM matrix elements : mixing, branching fractions
- Sub-degree level of measurements to be compared with the CKMfitter global fit to challenge the Standard Model
- **Loop-level** (indirect measurement) sensitive to New Physics (NP)

Halime Sazak (LPC Clermont)

- Discrepancy between these will indicate "New Physics"
- Many different channels used to measure the angles and sides of the triangle

(Pure SM like)

(Possible sensitivity to NP)

CKM angle γ in $B_s^0 \to \overline{D}^{(*)0}\phi(KK)$, $D^{(*)0} \to K^-\pi^+\pi^0$

Analysis based on Run1+Run2 data sample corresponding to an integrated luminosity of $9fb^{-1}$

GDR-InF Annual Workshop 2022

Halime Sazak (LPC Clermont)

Motivations

- Another accessible measurement in B_s^0 decays
- Time-integrated untagged analysis in various neutral D meson sub-decays [Phys.Rev.D.69.113003-2004]; J. Zupan, [Phys. Lett. B 649 (2007) 61]; S. Ricciardi, [LHCb-PUB-2010-005, CERN-LHCb-PUB-2010-005.]
- Relying on external input on QCD parameters on D decays
- Already observed in R. Aaij et al. [LHCb Collaboration], [Phys. Rev. D 98 (2018) 071103.]
- are comparable in size (r_B from 20% to 50%) [Phys. Rev. D 102 (2020) 056017.]

- Experimentally clean final states with the narrow mass resonances ϕ and D^0
- Decay modes considered in this analysis: $K\pi, K\pi\pi\pi, K\pi\pi^0, KK, \pi\pi$

In those decays the access to γ proceed through the two interfering color-suppressed Feynman diagrams, whose amplitudes

Yields used in sensitivity study

The sensitivity analysis relies on rough extrapolation based on the analysis that was not developed for $B_s^0 \rightarrow D^{(*)0}\phi(KK)$ but for the $B_s^0 \rightarrow$ $\overline{D}^{0}K^{+}K^{-}$. [Phys. Rev. D 98 (2018) 071103.]

The projections for sub-decay modes: $K\pi$, KK, $\pi\pi$, $K\pi\pi\pi$, $K\pi\pi^0$ are extrapolated from other published gamma papers in LHCb.

Goal: Optimize the selections for the various $B_s^0 \rightarrow$ $D^{(*)0}\phi$ channels to obtain a very high purity and the most abundant signal of $B_s^0 \rightarrow D^0 \phi$ to achieve the best sensitivity on γ

	Expect. yield (Run 1 or	al
$B^0_s ightarrow ilde{D}^0(K\pi)\phi$	$577 (132 \pm 13 18)$	4
$B^0_s ightarrow ilde{D}^0(K3\pi)\phi$	218	
$B^0_s ightarrow ilde{D}^0 (K\pi\pi^0) \phi$	58	
$B^0_s \rightarrow \tilde{D}^0(KK)\phi$	82	
$B^0_s ightarrow ilde{D}^0(\pi\pi)\phi$	24	
$B^0_s ightarrow ilde{D}^0 (K^0_{ m s} \pi \pi) \phi$	54	
$B^0_s ightarrow ilde{D}^0(K^0_{ m s}KK)\phi$	8	
$B^0_s \to \tilde{D}^{*0} \phi \text{ mode}$	$D^{0}\pi^{0}$ 1	D
$B^0_s \rightarrow \tilde{D}^{*0}(K\pi)\phi$	337	18
	(119 [18])	
$B^0_s \rightarrow \tilde{D}^{*0}(K3\pi)\phi$	127	(
$B^0_s \rightarrow \tilde{D}^{*0}(K\pi\pi^0)\phi$	34	
$B^0_s \rightarrow \tilde{D}^{*0}(KK)\phi$	48	1
$B^0_s \rightarrow \tilde{D}^{*0}(\pi\pi)\phi$	14	

The study was performed while varying the unknown nuisance strong interaction parameters: $r_B, \delta_B, r_B^*, \delta_B^*$

Extrapolate the yield of signals from [Phys. Rev. D 98 (2018) 071103.]

The sensitivity on \gamma obtained \sim 8^{\circ} to 19^{\circ} with Run1 & Run2 dataset(similar sensitivity as in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}(\pi \pi)$ decays)

In the absence of $B_s^0 \to D^* \phi$, the sensitivity to γ is 15 to 20% worse

Projection for future LHCb upgrades have also been studied in this paper

Halime Sazak (LPC Clermont)

$B_s^0 \rightarrow D^{(*)0}\phi$ analysis – optimization example for the "most challenging" mode $D^0 \rightarrow K^-\pi^+\pi^0$

- Selection of sub-decay mode $D^0 \rightarrow K^- \pi^+ \pi^0$ is complicated because of neutral pion π^0
 - Large backgrounds studied: Resolved $\pi^0 \rightarrow \gamma \gamma$ separately in **ECAL**
- **MC simulation:**
 - Amplitude model from E691 Experiment and confirmed by CLEO-C Experiment
 - Relative distribution of the strong phase is not effecting. Data is adjusted according to the Dalitz amplitude model.
 - MVA sculpts the 2D distribution without biasing the strong $D^0 \rightarrow K^- \pi^+ \pi^0$ phase
 - involving resonant Spin-1 particles (K^{*0} (horizontal), K^{*-} (vertical), ρ^+ (anti-diagonal))

MVA Method: BDT to select π^0 (discriminating variables)

Dalitz weight, photon asymmetry, photon tranverse energy, probability for photons to be not electrons or hadrons to reduce the background

Optimization of the π^0

- Signal Efficiency 85%
- Background Rejection 80%

Resonance R $K^{*0}(892) \to K^{-}\pi^{+}$ $K^{*-}(892) \to K^{-}\pi^{0}$ $\rho^+(770) \to \pi^+\pi^0$

02/11/2022

http://dx.doi.org/10.1093/ptep/ptaa104

Halime Sazak (LPC Clermont)

- **Pre-selections** inherited from $\overline{D}^{0}K^{+}K^{-}$ analysis re-optimized on $B_s^0 \rightarrow D^{(*)0}\phi$ to improve the statistical significance and to reduce the background [Phys. Rev. D 98, 071103(R)(2018)]
- Final selection studied for with MVA giving the best optimization suppresses the combinatorial background
 - Topological and kinematic variables to discriminate the signal against the background used for

 $\geq D^0 \rightarrow h^- h^+ (K\pi, KK, \pi\pi), D^0 \rightarrow K^- \pi^- \pi^+ \pi^+$ (Fisher)

 $\geq D^0 \rightarrow K^- \pi^+ \pi^0$ (MLP classifier)

Cand	lidates	Criteria
D ^o	Invariant mass	[1765.0 , 1965.0] MeV/c ²
Bo	Invariant mass	[5.1 , 6.0] GeV/c²
πο		[116.0 , 160.0] MeV/c²
Dº	Vertex $\chi^2 / nDof$	> < 6 to < 4
	BPVIPCHI2	> 20
Dº	$SDB = \frac{z_D - z_B}{\sqrt{\sigma_{ZD}^2 + \sigma_{ZB}^2}}$	 > 3 to ~ 1.25 (RUN1) > 3 to ~ 1.05 (RUN2) Charmless de
B ^o	Vertex $\chi^2 / nDof$	< 4
	BPVIPCHI2	< 4
	COS(O _{dira})(DPVDIRA)	> 0.99995
D*- (2010) veto	$m_{D_{\pi}}-m_D \notin [140.621$, $150.221]$ MeV/c²
PID r	equirements for D ^o daughters (RICHs Identification)	
* π	$ProbNN_{\pi} x (1 - ProbNN_{K}) x (1 - ProbNN_{p})$	▶ 2%
* K.	$\operatorname{ProbNN}_{K} x (1 - \operatorname{ProbNN}_{\pi}) x (1 - \operatorname{ProbNN}_{p})$	▶ 0.02% to 5%

The CKM angle – mass distribution and fit to the $B_s^0 \rightarrow D^{(*)0}\phi(KK)$

- Crystal-Ball resolution function
- [4750,6000]MeV/c²

The CKM angle – mass distribution and fit to the $B_s^0 \rightarrow D^{(*)0}\phi(KK)$

- of Chebyshev PDF are performed for the combinatorial background.
- The signal rate is improved by almost factor of 2

D⁰ sub decay modes $B_{\rm s} \rightarrow D^0 \phi$ [Chinese Phys. C 45 023003 (2021)] $B_s \rightarrow D^0 \phi$ LHCb Run1+Run2 $B_s \rightarrow D^{*0} \phi$ longitudinal [Chinese Phys. C 45 023003 (2021)] $B_{s} \rightarrow D^{*0}\phi$ LHCb Run1+Run2 (with $f_L = 0.5 \sim 0.7$)

- Uncertainty of yields are assumed to be \sqrt{N} in sensitivity study
- Relative uncertainty reduced $10\% \sim 30\%$, expect even better sensitivity on γ

• The yields are extracted by fitting the invariant mass of $B_s^0 \to D^{(*)0}\phi$ with Gaussian for the signal and combination

Κπ	$K\pi\pi^0$
577	58
935 <u>+</u> 32	134 <u>+</u> 13
521	52
1106 ± 45	137 ± 20

Halime Sazak (LPC Clermont)

CKM angle γ in $B^{\pm} \rightarrow \overline{D}{}^{0}K^{*\pm}$ with $K^{*-} \rightarrow K^{-}\pi^{0}$

- transitions in the tree level
- Analysis based on Run1+Run2 data sample corresponding to an integrated luminosity of $9fb^{-1}$

$$\delta_B$$
 , $r_B ~\sigma($

Sensitivity to γ determined by the interference between the favoured b \rightarrow c and suppressed b \rightarrow u quark

The CKM angle γ in $B^{\pm} \rightarrow \overline{D}{}^{0}K^{*\pm}$ decays

Motivations

- Analysis on more conventional decay of $B^{\pm} \rightarrow D^0 K^{*\pm}$ and $K^{*-} \rightarrow K_s \pi^-$ has been done with RunI & RunII (2015 & 2016) data by A. Nandi & S. Malde (Oxford) & V. Tisserand [LHCb-PAPER-2017-030]
- **B**⁻ \rightarrow D⁰K^{*-} with K^{*-} \rightarrow K⁻ π^0 same decay, another sub-decay using the full dataset RunI & RunII

$$\mathcal{BF}(K^{*-} \to K^0_{\rm s}(\pi^+\pi^-)\pi^-) \approx \frac{2}{3} \times BF(K^{*-} \to K^-\pi^0)$$

- Only difference dealing with π^0 (reconstruction efficiency much lower)
- Direct observation of the $B^- \rightarrow D^0 K^{*-}$ decay, where D^0 meson is reconstructed in four different final states: CP-even eigenstates K^-K^+ , $\pi^-\pi^+$ referred as GLW decay modes and flavour eigenstates $K^-\pi^+$ and $K^+\pi^-$ referred as ADS decay modes.
- With current analysis to be used and improved
 - Full datasets
 - Same physics, i.e. r_B , δ_B
 - Selection optimisation(Pre-selections, PID, MVA)
 - **Efficieny measurement**
 - **Systematics**

$$\begin{array}{c|cccc} \hline Decay \ mode & B^{-} \ yield & B^{+} \ yield \\ \hline B^{\pm} \to D(K^{\pm}\pi^{\mp})K^{*\pm} & 996 \pm 34 & 1035 \pm 35 \\ B^{\pm} \to D(K^{+}K^{-})K^{*\pm} & 134 \pm 14 & 121 \pm 13 \\ B^{\pm} \to D(\pi^{+}\pi^{-})K^{*\pm} & 45 \pm 10 & 33 \pm 9 \\ B^{\pm} \to D(K^{\mp}\pi^{\pm})K^{*\pm} & 1.6 \pm 1.9 & 19 \pm 7 \\ \hline R_{CP+} &= 1.18 \pm 0.08 \pm 0.01 \\ A_{CP+} &= 0.08 \pm 0.06 \pm 0.01 \\ \hline Statistical \ sign \\ 4.2\sigma \\ \hline H \ Cb-P\ APEB_{-} \end{array}$$

nificance

LHCb-PAPER-2017-030

3 steps of MVAs (MLP)

In order to fight against the combinatorial background the strategy is to use the particles (D and K*) sidebands

 \rightarrow 1) Bkgd with sideband m(K⁻ π^{0}) in [1.1, 1.3] Gev/c²

1 MVA on the π^0 and K^* discriminating variables using signal MC and data

to suppress the most abundant combinatorial background originated. from π^{υ} .

- $m(\pi^0)$ in [117.5, 159] Mev/c²
- m(K^*) mass region within the mass range $\pm 300 \text{ Mev}/c^2$ PDG mass.
- Discriminating variable i.e. cosThetaHely_bach: \mathbf{K}^* is a vector V \rightarrow SS

The signal distribution $cos^2 theta$ and the asymmetry is due to the stripping cuts on the p_T of the π^0 and K track.

 \rightarrow 2) **1 MVA on the D discriminating variables**. Using **MC in RED** and **data in Blue**. (see graphics right)

Cut on the mass range m(D) within $\pm 105~Mev/c^2$ PDG mass. (keep sideband for the later use)

→3) **1 MVA on the second B** discriminating variables using MC in RED and Data in Green. (see graphics right) on the \mathbf{K}^{*-} and MVA on the **D** used as inputs for the last MVA [Input variable: cosThetaHely_D]

• Discriminating variable i.e. cosThetaHely_D: the angle between the momentum

of the D and B mesons. The signal shape is 1- $cos^2 theta$ since $B^- \rightarrow D^0 K^{*-}$ is

 $S \rightarrow S+V$

6

٥

Sig Box

band

5σ

The CKM angle γ in $B^{\pm} \rightarrow \overline{D}{}^{0}K^{*\pm}$

- Various background sources contribute to the invariant mass fit

 - Partially reconstructed decays $B^- o D^{*0}[D^0\pi^0]K^{*-}$, $B^- o D^{*0}[D^0\gamma]K^{*-}$, $B^- \rightarrow D^{*+} [D^0 \pi^+] K^{*-}$

✓ Background from $B^0 \to D^{*+}[D^0\pi^+]\rho^-[\pi^-\pi^0]$ and $B^- \to D^{(*)0}\rho^-[\pi^-\pi^0]$

Combinatorial background \checkmark

- After all selections deployed, to remove the remaining non- K^* background (i.e. $B \rightarrow D^{0(*)}\rho$) lies below the signal peak, we follow two steps:
- First: A fit to the K^{*-} mass is performed on top of the combinatorial background and the mis-identified $\rho^- \rightarrow \pi^- \pi^0$
- Retain only $K^{*-} \rightarrow K^{-}\pi^{0}$ candidates in the mass range of [0.692, 1.092]GeV/c²
- Signal shape modelled $m(K^-\pi^0)$: Breit-wigner function convoluted with two Novosibirsk PDFs

$B^{\pm} \rightarrow \overline{D}^{0}K^{*\pm}$ analysis -- sPlot subtraction of non- K^{*} background

• sPlot technique which provides a statistical subtraction is used to distinguish to remove the non- K^* background

<u>Second</u>: From the fit to the K^{*-} , sWeight is determined to project into

Combinatorial background and $D^{0(*)}\rho$ contamination almost fully

Mass distribution and fit to the $B^{\pm} \rightarrow \overline{D}^0 K^{*\pm}$

02/11/2022

GDR-InF Annual Workshop 2022

- After the sPlot subtraction an extended unbinned maximum likelihood fit performed to the invariant mass of on $B^- \rightarrow B^ \mathbf{D}^{\mathbf{0}}\mathbf{K}^{*-}$ candidates in the mass range $m_{DK\pi^0} \in [4950, 5800]$ MeV/c²
- Signal yields extracted from the fit to the invariant mass of $B^- \rightarrow D^0 K^{*-}$, where D^0 decays to $K^- \pi^+$ and for B^- and B^+ candidates.

 $A_{K\pi} = (-1.3 \pm 3.2 \pm 0.2)\%$ obtained after corrections and systematics and it is compatible with zero as expected

There is no asymmetry observed.

The result is comparable with the reference published analysis $B^- \to D^0 K^{*-}$ with $K^{*-} \to K_s \pi^-$ correspond to $A_{K\pi} = (-0.4 \pm 10^{-0})$ **2**. **3** ± **0**. **8**)% [LHCb-PAPER-2017-030]

Mass distribution and fit to the $B^{\pm} \rightarrow \overline{D}^0 K^{*\pm}$

- $\mathbf{D}^{\mathbf{0}}\mathbf{K}^{*-}$ candidates in the mass range $m_{DK\pi^0} \in [4950, 5800]$ MeV/c²
- Signal yields extracted from the fit to the invariant mass of $B^- \rightarrow D^0 K^{*-}$, where D^0 decays to $K^+ \pi^-$.

• After the sPlot subtraction an extended unbinned maximum likelihood fit performed to the invariant mass of on $B^- \rightarrow$

Mass distribution and fit to the $B^{\pm} \rightarrow \overline{D}^0 K^{*\pm}$

- After the sPlot subtraction an extended unbinned maximum likelihood fit performed to the invariant mass of on $B^- \rightarrow D^0 K^{*-}$ candidates in the mass range $m_{DK\pi^0} \in [4950, 5800] \text{MeV/c}^2$
- candidates.

• Signal yields extracted from the fit to the invariant mass of $B^- \rightarrow D^0 K^{*-}$, where D^0 decays to K^-K^+ and $\pi^-\pi^+$ for B^- and B^+

Halime Sazak (LPC Clermont)

Conclusion

Analysis for the CKM angle γ measurements are presented

 $B_s^0 \rightarrow D^{(*)0}\phi(KK)$ decay, where D^0 to $K^-\pi^+\pi^0$

 $B^- \rightarrow D^0 K^{*-}$ decay, where D^0 to $K^- \pi^+$, $K^- K^+$, $\pi^- \pi^+$, $K^+ \pi^-$

 $K3\pi, K\pi\pi^0$.

The results will be improved with the better statistics will be reached by the LHCb Run 3

- The CKM angle γ is constrained with the modes of $B_s^0 \to D^{(*)0}\phi(KK)$, where D^0 reconstructed in $K\pi$, KK, $\pi\pi$,
- The asymmetry $A_{K\pi} = (-1.3 \pm 3.2 \pm 0.2)\%$ is obtained compatible with zero and this result is compatible with the reference analysis $B^- \rightarrow D^0 K^{*-}$ with $K^{*-} \rightarrow K_s \pi^-$ published by LHCb $A_{K\pi} = (-0.4 \pm 2.3 \pm 0.8)\%$

Thank you for your attention!

02/11/2022

GDR-InF Annual Workshop 2022

Halime Sazak (LPC Clermont)

