STUDY OF THE $\Lambda_b^0 \rightarrow D^0 p K^-$ DECAY FOR A MEASUREMENT OF CKM ANGLE γ

Chiara Mancuso, Nicola Neri, Patrick Robbe

02/11/2022

GDR-InF Annual Workshop 2022

chiara.mancuso@cern.ch

INTRODUCTION AND MOTIVATIONS

- Aims of the study: •
 - Measuring CP violation in baryons a dream! •
 - Performing a measurement of the CKM angle γ •
- CP violation is accommodated within the SM through the CKM matrix •
 - Wolfenstein parametrization •
- From the unitarity, we can extract the unitarity triangle •

INTRODUCTION AND MOTIVATIONS

- Aims of the study: •
 - Measuring CP violation in baryons a dream! •
 - Performing a measurement of the CKM angle γ •
- CP violation is accommodated within the SM through the CKM matrix •
 - Wolfenstein parametrization •
- From the unitarity, we can extract the unitarity triangle •

$$\gamma \equiv \arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$$

$$\gamma = (65.6^{+1.1}_{-2.7})^{\circ}$$

[http://ckmfitter.in2p3.fr]

$$\gamma = (63.8 \substack{+3.5 \ -3.7})^{\circ}$$
[LHCb-CONF-2022-002]

INTRODUCTION AND MOTIVATIONS

Gronau, London, Wyler (GLW) method $\rightarrow D^0$ decays into CP eigenstates [Phys. Lett. B265 (1991), pp. 172–176]

- CP-even eigenstates: K^-K^+ , $\pi^-\pi^+$ •
- CP-odd eigenstates: $K_S \pi^{0}, K_S \rho^{0}, \dots$

THE LHCB EXPERIMENT

- Asymmetric single-arm detector
- •

GDR-InF Annual Workshop 2022 - Chiara Mancuso

Primary goal is to look for indirect evidence of new physics and rare decays in CP violation

02/11/2022

ANALYSIS STRATEGY

- Analysis performed on Runl and Runll data (2011 2018) •
- Wide use of the control channel, i.e. $\Lambda_b^0 \rightarrow D^0 p \pi^-$

$$\begin{array}{ll} \mathcal{B}(\Lambda_b^0 \to D^0 p \pi) & (6.3 \pm 0.7) \times 10^{-4} \\ \mathcal{B}(\Lambda_b^0 \to D^0 p K) & (4.6 \pm 0.8) \times 10^{-5} \end{array}$$

- First preselection of PID: proton, h_D^{\pm} •
 - Optimized on the control channel and applied also to the signal

ANALYSIS STRATEGY – THE CHALLENGE

Preliminary studies shown:

• The charmless background (i.e. $\Lambda_b^0 \rightarrow ph^-h^+h^-$) is an highly contaminating background

Why are we so concerned by this specific background?

Could it be removed in a more efficient way than with a rectangular cut? [Phys. Rev. D 104, 112008 (2021)], [CERN-THESIS-2020-314] •

02/11/2022

ANALYSIS STRATEGY – THE CHALLENGE

Preliminary studies shown:

- The charmless background (i.e. $\Lambda_b^0 \rightarrow ph^-h^+h^-$) is an highly contaminating background •
- Could it be removed in a more efficient way than with a rectangular cut? [Phys. Rev. D 104, 112008 (2021)], [CERN-THESIS-2020-314]

Proposals:

ANALYSIS STRATEGY – THE CHALLENGE

Preliminary studies shown:

- The charmless background (i.e. $\Lambda_b^0 \rightarrow ph^-h^+h^-$) is an highly contaminating background •
- Could it be removed in a more efficient way than with a rectangular cut? [Phys. Rev. D 104, 112008 (2021)], [CERN-THESIS-2020-314]

Proposals:

ANALYSIS STRATEGY - THE SELECTION

- Choosing the tool was only part of the work, also a strategy has been optimized
- The selection has been optimized to reduce other background sources: •
 - Mis-identification of $\Lambda_b^0 \to D^0 p K^-$ with $\Lambda_b^0 \to D^0 p \pi^-$ ٠
 - $\Lambda_c^+ \to ph^-h^+$ veto
 - Selection on proton PID has been very effective with the multiple background sources
- The optimization followed the maximization of the Figure of Merit
- For $\Lambda_h^0 \to D^0 p K^-$, the number of signal events was estimated from efficiencies and physical quantities, in order to proceed "blind"

$S_{FoM} =$	S	$\epsilon_S S_0$
	$\overline{\sqrt{S+B}}$	$= \frac{1}{\sqrt{\epsilon_S S_0 + \epsilon_B B_0}}$

ANALYSIS STRATEGY - CONTROL CHANNEL RESULTS

In order to quantify the charmless contribution, if exists, a simultaneous fit to both the Λ_b^0 and D^0 invariant mass is performed

The fit strategy is first tested on the control channel:

- Signal modelled with the sum of two Crystal Balls
- Combinatorial background modelled by an exponential
- D^{*0} shape estimated with one-dimensional kernel estimator p.d.f

CONCLUSIONS AND FUTURE PLANS

- We are studying $\Lambda_b^0 \to D^0 p K^-$ and $\Lambda_b^0 \to D^0 p \pi^-$ to try to measure CP violation in baryons
- The selection has been optimised and a fitting strategy has been chosen
- Active collaboration with UCAS group for binning optimization in their CKM angle γ measurements using $\Lambda_b^0 \rightarrow D^0 p K^-$, with $D^0 \rightarrow K^- 3\pi$, $D^0 \rightarrow K_S^0 \pi^- \pi^+$

Thanks for your attention!

BACKUP – CHARMLESS BRANCHING FRACTION

Charmless Mode	DATA Sample	$\frac{\mathcal{B}(\Lambda_b^0 \to ph)}{\mathcal{B}(\Lambda_b^0 \to D^0 p)}$
$\Lambda^0_b \to p K^- K^+ K^-$	$[K^-K^+]_{D^0}pK^-$	~ 6.8 >
$\Lambda_b^0 \to p K^- K^+ \pi^-$	$egin{array}{l} [K^+\pi^-]_{D^0}pK^-\ [K^-K^+]_{D^0}p\pi^- \end{array}$	~ 5.9 $ m >$ ~ 1.6 $ m >$
$\Lambda^0_b \!\rightarrow p K^- \pi^+ \pi^-$	$egin{array}{l} [\pi^-\pi^+]_{D^0} p K^-\ [K^-\pi^+]_{D^0} p \pi^- \end{array}$	~ 7.6 $ m >$ ~ 2.1 $ m >$
$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$	$[\pi^-\pi^+]_{D^0}p\pi^-$	~ 5.6 >

