

Extending the CMS physics program with the Precision Proton Spectrometer (PPS)

A. Bellora

Centre de Physique des Particules de Marseille Marseille, 24th October 2022

Structure of the presentation

- Introduction to PPS
- Proton reconstruction
- Physics analyses with proton tagging
- PPS in LHC Run 3 and beyond

Introduction to PPS

PPS physics case

- Study central exclusive production (CEP) at the LHC
 - Protons remain intact
- Proton tagging provides:
 - Full reconstruction of the final state
 - Strong background rejection
- Exploit LHC as a photon-photon collider:
 - Test QED processes (favoured at high mass)
 - Search for BSM physics:
 - Enhancements over high-mass tails
 - New resonances
 - High sensitivity to anomalous couplings

Precision Proton Spectrometer (PPS)

- LHC magnetic field bends protons that survived the interaction in CMS:
- Tracking and timing detectors installed in Roman Pots (RPs), to measure:
 - Track displacement from beam center \rightarrow Fraction of momentum lost by the proton (ξ)
 - Time of arrival on both sides
- er \rightarrow Fraction of momentum lost by the proton (ξ \rightarrow Longitudinal coordinate of the vertex (z)

CMS

Precision Proton Spectrometer (PPS)

otons that survived the interaction in CMS: s installed in Roman Pots (RPs), to modelling n center \rightarrow Fraction of momentum lo → Longitudinal coordinate

Beam pipe insertions that approach the LHC beam down to \sim 1.5 mm

h 2

CMS

A. Bellora - Extending the CMS physics program with PPS - 6

INFN

PPS radiation environment

PPS throughout Run 2

- 2016 \rightarrow 210-far + 220-near stations:
 - Legacy TOTEM Si-strips (5+5 planes, 66 μm pitch, 300 μm thick)
- 2017 \rightarrow 210-far + 220-far stations for tracking + 1 cylindrical RP for timing:
 - Tracking: Legacy TOTEM Si-strips + 3D Si-pixels
 - Timing: 3 planes of single-layer scCVD diamonds + 1 UFSD (LGAD) plane
- 2018 \rightarrow same as 2017:
 - Tracking: only 3D Si-pixels
 - Timing: 2 planes of single-layer scCVD diamonds + 2 planes of double-layer

Diamonds

3D pixels for PPS Run 2

- Silicon 3D pixel sensors:
 - Optimal choice for high radiation hardness
 - Decouple thickness from drift path length
 - Low depletion voltage (<10 V)
 - Slim/active edge
- Sensors for PPS Run 2:
 - Produced at CNM with double-sided process
 - 230 µm-thick sensors
 - 200 μm-deep, 10 μm-diameter columns
 - $150 \times 100 \ \mu m^2$ pixel size
 - 2×2 or 3×2 matrix of 52×80 pixels

Run 2 data-taking

- PPS collected more than 110 fb⁻¹ during Run 2:
 - Almost 100 fb⁻¹ with pixels
 - \sim 84% of the CMS total luminosity
 - Very stable running in 2017-2018

Proton reconstruction

Detector alignment

Multi-step procedure: base measurement in dedicated fill, then corrected fill-by-fill

- Alignment fill: determine the beam position and the relative detector positions
 - Low intensity (2-3 bunches), detectors closer to the beam, vertical RPs inserted
 - Data collected for each LHC setting that will be used during future data-taking
 - Elastic scattering kinematic properties used to find the beam center
- Corrections: match dedicated observables to their alignment fill counterpart

CMS

CMS-PAS-PRO-21-001 CERN-TOTEM-NOTE-2022-001

Proton transport

- Reconstruct the proton kinematics at the IP (*d**) from the measurements at the RP positions (*d*)
- Propagation modelled via the transport matrix T, containing the optical functions: $d = T \cdot d^*$

$$\begin{pmatrix} x \\ \theta_x \\ y \\ \theta_y \\ \theta_y \\ \xi \end{pmatrix} = \begin{pmatrix} v_x & L_x & 0 & 0 & D_x \\ v'_x & L'_x & 0 & 0 & D'_x \\ 0 & 0 & v_y & L_y & D_y \\ 0 & 0 & v'_y & L'_y & D'_y \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^* \\ \theta^*_x \\ y^* \\ \theta^*_y \\ \xi \end{pmatrix}$$

• Simplified version with leading terms:

CMS-PAS-PRO-21-001

CERN-TOTEM-NOTE-2022-001

$$x = (v_x(\xi)) \cdot x^* + (L_x(\xi)) \cdot \theta_x^* + (D_x(\xi)) \cdot \xi$$

$$y = (v_y(\xi)) \cdot y^* + (L_y(\xi)) \cdot \theta_y^* + (D_y(\xi)) \cdot \xi$$

Magnifications Effective lenths Dispersions

Optics calibration

- Precise knowledge of the LHC beam optics is needed for proper reconstruction
 - Nominal optics calculated with MAD-X (accelerator simulation based on LHC parameters)
- Further calibration with data:
 - L_y calibrated using elastic events in the alignment run
 - D_x derived with two methods:
 - Determination of the 'pinch' point ($L_y = 0$) in min-bias events
 - Validation with the $\mu\mu$ sample
- Optical functions vary with crossing angle
 - This means variable acceptance during data-taking!

Validation with exclusive $\mu\mu$ events

- Select two oppositely charged μ :
 - $p_T > 50 \text{ GeV}$
 - $m(\mu^+\mu^-) > 110 \text{ GeV}$
 - Low acoplanarity
 - $1 |\Delta \phi(\mu^+ \mu^-)|/\pi < 0.009$
 - No close tracks to the $\mu\mu$ vertex
 - Closer than 0.5 mm
- Compute the ξ from $\mu\mu$ with: $\xi_{\pm}(\mu^{+}\mu^{-}) = \frac{1}{\sqrt{s}}(p_{T}(\mu^{+})e^{\pm\eta(\mu^{+})} + p_{T}(\mu^{-})e^{\pm\eta(\mu^{-})})$
- Compare with the proton ξ
 - Use results to further improve the proton ξ reconstruction

CMS-PAS-PRO-21-001 CERN-TOTEM-NOTE-2022-001

PPS mass/rapidity acceptance

0.2

Reconstruction strategies

• Single-RP protons:

CMS

- Use data from only one $RP \rightarrow partial reconstruction$
 - $\xi = \frac{x}{D_x}$ and $\theta_y^* = \frac{y}{L_y(\xi)}$
- Lower ξ resolution, less sensitive to systematics
- Multi-RP protons:
 - Combine measurements in 2 RPs (same sector)
 - Minimize $\chi^2 = \sum_{i:RPs} \sum_{q:x,y} \left[\frac{d_q^i (T^i d^*)_q}{\sigma_q^i} \right]^2$
 - Better resolution, higher systematics (at high ξ)

effect on ξ

Physics analyses with proton tagging

Probing AQGC with exclusive $\gamma\gamma \rightarrow VV$

- Search for anomalous WW/ZZ (VV) exclusive production at high mass:
 - Exploring the hadronic decay channel (each V decaying into a boosted and merged jet)
 - Require intact protons on both sides
 - Look for non-resonant enhancements over high-mass tails (AQGC/EFT)
- Why not aiming for SM production?
 - ZZ not allowed at tree level
 - WW exclusive production concentrated in the low mass region:
 - Higher QCD background
 - Out of reach with the Run 2 trigger thresholds on jets
 - Dedicated trigger will be used in Run 3

CMS

Selection on central variables

Trigger:

CMS

- Combination of triggers based on the highest jet p_T and sum of the p_T of all jets
- >99% efficiency for $m(j_1j_2) > 1126$ GeV

Selection:

- \geq 2 V-tagged (τ_{21}^{DDT} < 0.75) AK8 (large radius) jets
- $|\eta(j_1, j_2)| < 2.5$
- $p_T(j_1, j_2) > 200 \text{ GeV}$
- 60 GeV < $m_{pruned}(j_1, j_2)$ < 107 GeV
- $|\eta(j_1) \eta(j_2)| < 1.3$
- $p_T(j_1)/p_T(j_2) < 1.3$
- $a = |1 \Delta \phi(j_1 j_2)/\pi| < 0.01$
- 1126 GeV < $m(j_1j_2)$ < 2500 GeV
- \geq 1 proton per side of PPS (in acceptance)
- Backgrounds:
 - Main: QCD di-jet production (simulated with Pythia8) + pileup protons
 - Others: $t\bar{t}$, W/Z + jets (Madgraph/Powheg) + pileup protons

CMS-PAS-SMP-21-014 CERN-TOTEM-NOTE-2022-004

- WW/ZZ separation based on [sub]leading jet pruned mass $m(j_1)[m(j_2)]$
 - No dependence observed on anomalous coupling value

- *pp* vs. *VV* matching with:
 - Mass match ratio: 1 - m(VV)/m(pp),
 - $m(pp) = \sqrt{s\xi_1\xi_2}$
 - Rapidity difference: y(pp) - y(VV), $y(pp) = \frac{1}{2} \ln\left(\frac{\xi_1}{\xi_2}\right)$
- Two signal regions:
 - $\boldsymbol{\delta}$: both protons from the interaction
 - *o*: one proton mistakenly chosen from pileup

CMS-PAS-SMP-21-014 CERN-TOTEM-NOTE-2022-004

Background estimation

Region A	Region B
a < 0.01	a > 0.01
&	&
Signal region	Signal region
Region C	Region D
a < 0.01	a > 0.01
&	&
(1 - m(VV)/m(pp) > 1.0	(1 - m(VV)/m(pp) > 1.0
or	or
w(mp) = w(VV) > 0.5)	w(mp) = w(VV) > 0.5)

- Fully data-driven background estimation: sidebands method
 - $N_A = N_C \times N_B / N_D$
 - Other sidebands considered for systematics

Results

- Results show no excess over the BG-only expectation in both WW and $Z\bar{Z}$
- Main systematic uncertainties:
 - Signal and BG: proton ξ and jet energy scale
 - BG-only: mainly affected by low statistics in the sidebands

CMS-PAS-SMP-21-014 CERN-TOTEM-NOTE-2022-004

100.0 fb⁻¹ (13 TeV)

erved 95% CL limi

Expected 95% CL limit \pm 10

Expected 95% CL limit ± 20

pected 95% CL limit

CMS-TOTEM

Preliminary

2000

1500

0

0 1000

NO -500

 \mathbf{X} 500

<

N

CMS **Results**

- Limits on fiducial anomalous production cross sections: $\sigma(pp \rightarrow pWWp)_{0.04 < \xi < 0.2, m(WW) > 1 \text{ TeV}} < 67(53^{+34}_{-19}) \text{ fb}$ $\sigma(pp \rightarrow pZZp)_{0.04 < \xi < 0.2, m(WW) > 1 \text{ TeV}} < 43(62^{+33}_{-20}) \text{ fb}$
- Limits set on dim-6 AQGC parameters: with/without unitarization 2500 2000 2000 1500
 - Unitarization \rightarrow EFT cross section diverges at high mass
 - Prevented by 'clipping' the distribution (cannot be done on ZZ channel)
 - Also converted to 2D limits

INFN

- Limits also converted to dim-8 AQGC parameters $(f_{M,0...7}/\Lambda^4)$
 - Under the assumption all couplings are zero except one

Coupling	Observed (expected) 95% CL upper limit	Observed (expected) 95% CL upper limit
	No clipping	Clipping at 1.4 TeV
$ f_{M,0}/\Lambda^4 $	$66.0 (60.0) \text{ TeV}^{-4}$	79.8 (78.2) TeV^{-4}
$ f_{M,1}/\Lambda^4 $	245.5 (214.8) TeV^{-4}	$306.8 (306.8) \text{ TeV}^{-4}$
$ f_{M,2}/\Lambda^4 $	9.8 (9.0) TeV^{-4}	$11.9 (11.8) \text{ TeV}^{-4}$
$ f_{M,3}/\Lambda^4 $	$73.0 \ (64.6) \ \mathrm{TeV^{-4}}$	91.3 (92.3) TeV^{-4}
$ f_{M,4}/\Lambda^4 $	$36.0 (32.9) \text{ TeV}^{-4}$	$43.5 (42.9) \text{ TeV}^{-4}$
$ f_{M,5}/\Lambda^4 $	67.0 (58.9) TeV^{-4}	$83.7 (84.1) \text{ TeV}^{-4}$
$ f_{M,7}/\Lambda^4 $	$490.9 (429.6) \text{ TeV}^{-4}$	$613.7 (613.7) \text{ TeV}^{-4}$

• Comparison with other analyses \rightarrow not very straightforward

- Dim-6 limits: 15-20x tighter than CMS Run 1 exclusive WW analysis with unitarization
- Dim-8 limits: limits on some parameters are close to CMS results in same-sign WW or WZ channels, after unitarization

Exclusive $\gamma\gamma \rightarrow \gamma\gamma$

- Search for LbyL scattering with proton tagging
- Full Run 2 dataset, 102.7 fb⁻¹
 - Extending Phys. Rev. Lett. 129, 011801
- Matching requirement in the mass and rapidity between $\gamma\gamma$ and protons:

$$m_{\gamma\gamma} = \sqrt{s\xi_1\xi_2} \quad y_{\gamma\gamma} = \frac{1}{2}\ln\left(\frac{\xi_1}{\xi_2}\right)$$

- Main background: inclusive $\gamma\gamma$ production + pileup
- One candidate observed:
 - BG prediction of 1.1 events with 2σ matching

Event selection:

- \geq 2 isolated γ (*H*/*E* < 0.10)
- $|\eta(\gamma_1, \gamma_2)| < 2.5$
- $p_T(\gamma_1, \gamma_2) > 75 \text{ GeV}$ • 100 GeV for 2017/8
- $m(\gamma_1 \gamma_2) > 350 \text{ GeV}$
- $1 |\Delta \phi(\gamma_1 \gamma_2) / \pi| < 0.0025$
- 1 proton per side of PPS within acceptance

Exclusive $\gamma\gamma \rightarrow \gamma\gamma$

within acceptance

Exclusive $\gamma\gamma \rightarrow \gamma\gamma$

- Search for LbyL scattering with proton tagging
- Full Run 2 dataset, 102.7 fb⁻¹
 - Extending Phys. Rev. Lett. 129, 011801
- Matching requirement in the mass and rapid Limits also set for ALP production $(\gamma \gamma \rightarrow a \rightarrow \gamma \gamma)$ as a function of m_{ALP} and its coupling f^{-1} : strongest limits in the 500-2000 GeV range
- Main background: inclusive γγ production -
- One candidate observed:
 - BG prediction of 1.1 events with 2σ matching

within acceptance

- Search for missing mass produced in association with a Z boson or photon in proton-tagged events
- Exploit the high-precision proton momentum measurement from PPS
- Search for weakly interacting BSM massive particles
 - QED interactions are favoured over QCD processes
 - Broad invariant mass spectrum explored (600-1600 GeV)

Searching for missing mass with $ZI\gamma$

- A novel technique to search for new particles at the LHC:
 - Use the so-called missing mass:
 - $m_{miss}^{2} = \left[\left(p_{p_{2}}^{in} + p_{p_{2}}^{in} \right) \left(p_{V} + p_{p_{1}}^{out} + p_{p_{2}}^{out} \right) \right]^{2}$

CMS

CMS-PAS-EXO-19-009 OTEM-NOTE-2022-003

Searching for missing mass with $ZI\gamma$

- 2017 data, 37.2 fb⁻¹ integrated luminosity
- Signal modelled with a simplified dedicated MC generator
- Main background: non-exclusive Z/γ production + protons from pileup
 - Data-driven estimation by mixing uncorrelated protons with MC

CMS

CMS-PAS-EXO-19-009 CERN-TOTEM-NOTE-2022-003

Searching for missing mass with $ZI\gamma$

- Bump search over missing mass spectrum
 - No major local excess/deficit observed
 - Larger dataset will be analysed

CMS

CMS-PAS-EXO-19-009 CERN-TOTEM-NOTE-2022-003 • Setting 95% CL on fiducial cross section as a function of m_X

INFŃ

CEP of top quark pairs

- First search for top quark-antiquark pair production with intact protons
- Low cross section $\mathcal{O}(0.3 \text{ fb})$ in the PPS acceptance
 - Signal concentrated at low $t\bar{t}$ mass, where BG is dominant
- 2017 dataset: 29.4 fb⁻¹
- Two $t\bar{t}$ decay channels studied: $\ell\ell$ and ℓ +jets
- Proton matching criteria used as BDT inputs or kinematic fitting constraints

CMS

0.2 0.4 (m^(reco) - m^(gen))/n

CMS-TOTEM

Simulation Preliminary

ℓ +jets channel

-0.4

-0.2

0

0.07

0.06

0.05

0.04 0.03 0.02 0.01

CEP of top quark pairs

- MVA approach used to tag exclusive $t\bar{t}$ events
- Cross section upper limits extracted from multivariate discriminant distributions:

CERN-TOTEM-NOTE-2022-002

• Observed combined 95% CL limit: 0.59 pb $(1.14^{+1.2}_{-0.6} \text{ expected})$

PPS in LHC Run 3 and beyond

New detectors for PPS Run 3

- New tracker with 3D pixel silicon sensors:
 - Different technology wrt. Run 2
 - Internal movement system to improve radiation tolerance
- New timing detectors:
 - Only double-diamond detector planes
 - Improved electronics to optimize performance
 - Add two detector stations per side of CMS

PPS in HL-LHC

- New proposal for HL-LHC:
 - Extending the mass acceptance range in two stages (350 GeV 2 TeV in Run 2+3)
 - 1. 133 GeV 2.7 TeV with the first 3 stations
 - 2. 43 GeV 2.7 TeV adding the fourth
- Extend the current SM and BSM physics program
- Final decision on detector technologies to be taken

arXiv:2103.02752

- The CMS PPS tracker and proton reconstruction performance in Run 2 was studied and specialized techniques were developed for proton reconstructions
- Protons are now being used for SM and BSM physics analyses, opening up new strategies for the CMS physics program:
 - Top quark pair production
 - Anomalous vector boson pair exclusive production
 - High-mass diphoton exclusive production
 - Missing mass in association with *Z* boson or photon
- PPS has prepared new detectors for Run 3 and is willing to take part to HL-LHC

Thanks for your attention

BACKUP

Diffractive *pp* interactions

t-channel processes, common denominator: colourless neutral particle exchange
 It happens either via QED (γ) or QCD (IP) processes

- 2 sectors (45 and 56)
- In each sector: 2 tracking stations + 1(2) timing stations in Run 2(3)
- In each tracking station: 2 vertical RPs (only for special runs) + 1 horizontal

Strips efficiency components

Multi-tracking efficiency

Strips detection efficiency

Multi-RP proton efficiency

CMS

Fill-by-fill alignment

Optics calibration

• Horizontal dispersion calibrated for different crossing angles:

• Interpolated for values in between

Vertical effective length

Proton *t* **reconstruction**

Four-momentum transfer squared $t = (p'-p)^2$: $t = t_0(\xi) - 4p_{nom}^2(1-\xi)\sin^2\left(\frac{\sqrt{\theta_x^{*2} + \theta_y^{*2}}}{2}\right),$

$$t_0(\xi) = 2\left(m^2 + p_{nom}^2(1-\xi) - \sqrt{(m^2 + p_{nom}^2)(m^2 + p_{nom}^2(1-\xi)^2)}\right)$$

CMS

• Data: full Run 2 dataset, with two inserted RPs per sector

Year	Integrated Luminosity [fb ⁻¹]	Fraction of CMS total
2016	9.9	28%
2017	37.2	90%
2018	52.9	89%
Total	100.0	73%

• Signal MC:

- Exclusive WW/ZZ produced via Forward Physics MC (FPMC), dim-6 AQGC model
- Multiple coupling points to scan sensitivity

• Background MC:

- Main: QCD di-jet production (simulated with Pythia8) + pileup protons
- Others: $t\bar{t}$, W/Z + jets (Madgraph/Powheg) + pileup protons

CMS-PAS-SMP-21-014 CERN-TOTEM-NOTE-2022-004

Conversion to dim-8 limits

• Conversion done following the approach of Eboli et al., Phys. Rev. D 93 (2016) 9, 093013 $a_{0}^{W} = -\frac{M_{W}^{2}}{\pi \alpha_{em}} \left[s_{w}^{2} \frac{f_{M,0}}{\Lambda^{2}} + 2c_{w}^{2} \frac{f_{M,2}}{\Lambda^{2}} + s_{w}c_{w} \frac{f_{M,4}}{\Lambda^{2}} \right]$ $a_{C}^{W} = -\frac{M_{W}^{2}}{\pi \alpha_{em}} \left[-s_{w}^{2} \frac{f_{M,1}}{\Lambda^{2}} - c_{w}^{2} \frac{f_{M,3}}{\Lambda^{2}} + 2s_{w}c_{w} \frac{f_{M,5}}{\Lambda^{2}} + \frac{s_{w}^{2}}{2} \frac{f_{M,7}}{\Lambda^{2}} \right]$ $a_{0}^{Z} = -\frac{M_{W}^{2}c_{w}^{2}}{\pi \alpha_{em}} \left[\frac{s_{w}^{2}}{2c_{w}^{2}} \frac{f_{M,0}}{\Lambda^{2}} + \frac{f_{M,2}}{\Lambda^{2}} - \frac{s_{w}}{2} \frac{f_{M,4}}{\Lambda^{2}} \right]$ $a_{C}^{Z} = -\frac{M_{W}^{2}c_{w}^{2}}{\pi \alpha_{em}} \left[-\frac{s_{w}^{2}}{2c_{w}^{2}} \frac{f_{M,0}}{\Lambda^{2}} - \frac{1}{2} \frac{f_{M,3}}{\Lambda^{2}} - \frac{s_{w}}{c_{w}} \frac{f_{M,5}}{\Lambda^{2}} + \frac{s_{w}^{2}}{4c_{w}^{2}} \frac{f_{M,7}}{\Lambda^{2}} \right]$

• Assume all couplings to be 0 but one

Conversion to dim-8 limits

• Further imposing: $f_{M,0} = 2 \cdot f_{M,2} \rightarrow \text{vanishing } WWZ\gamma$ coupling

Coupling	Observed (expected) 95% CL upper limit	Observed (expected) 95% CL upper limit
	No clipping	Clipping at 1.4 TeV
$ a_0^W/\Lambda^2 $	$4.3 (3.9) \times 10^{-6} \mathrm{GeV^{-2}}$	$5.2 (5.1) imes 10^{-6} \mathrm{GeV^{-2}}$
$\left a_{C}^{W}/\Lambda^{2}\right $	$1.6~(1.4) imes 10^{-5} { m GeV^{-2}}$	$2.0(2.0) \times 10^{-5} \mathrm{GeV^{-2}}$
$\left a_{0}^{Z}/\Lambda^{2}\right $	$0.9~(1.0) \times 10^{-5} \mathrm{GeV^{-2}}$	_
$ a_C^{\tilde{Z}}/\Lambda^2 $	$4.0~(4.5) \times 10^{-5}~{ m GeV^{-2}}$	-

Dim-6 limits: 1D

Dim-6 limits: 2D

Track reconstruction algorithm

- Only events with \geq 3 planes with clusters are considered:
 - No reconstruction if \geq 60 hits/station or \geq 20 hits/plane
- Tracks are fitted with a straight line:
 - $\chi^2/NdF < 5$ is required
 - The combinatory procedure starts from 6-planes tracks and proceeds to fewer-plane ones
 - If number of tracks \geq 10 the event is discarded

Plane efficiency measurements

- Efficiency characterisation → mandatory task!
- Two-step procedure:
- 1. Evaluation of the efficiency map of each detector plane
 - Use data collected during physics run
 - Frequent measurement (every ~fb⁻¹)
 - Efficiency evaluation as:

$$\varepsilon_{k} = \frac{N_{4,5,6}(k)}{N_{3}(\bar{k}) + N_{4,5,6}(k \vee \bar{k})}$$

'Radiation' efficiency measurement

2. Evaluate the detection efficiency of the entire DP:

- Reference sample taken at the beginning of data-taking used to model the track distribution
- Compute the detection efficiency as the probability of having at least 3 efficient planes, assuming the plane efficiency computed in step 1
- DP efficiency \rightarrow average efficiency over all reference tracks binned in x, y

CMS

Efficiency during data-taking

CMS

A new tracker for PPS: sensors

• Wafer bow $< 200 \,\mu m$

• I(25 V)/I(20 V) < 2

- Sensors for PPS Run 3:
 - Produced at FBK with single-sided process
 - 150 µm-thick active bulk
 - 80 µm handle wafer (after thinning)
 - 5 µm-diameter columns
 - $150 \times 100 \ \mu m^2$ pixel size (same as Run 2)
 - 2×2 matrix of 52×80 pixels (same as Run 2)
- Requirements:
 - $V_{depl} < 10 V$
 - $V_{bd} > 50 V$
- Production statistics:
 - 468 sensors produced
 - 238 (50.9%) passed the requirements
 - All in Class A $[I(V_{depl} + 20 V) < 16 \mu A]$

CMS

A new tracker for PPS: mechanics

- New detector package mechanics developed in Genova Key elements:
 - Slots for 2 additional planes (currently not in use)
 - Sliding rails to allow 'vertical' movement (~5.7 mm range)
 - Support for stepping motor + position sensor

CMS

The PPS pixel movement system

• Pixel movement system fully designed and installed in the LHC tunnel

- Remote movements in ~500 μm steps over a ~5.7 mm range will distribute the irradiation and extend the detector lifetime
- Highlights:
 - Monitoring and control performed via Raspberry Pi micro-computers
 - Network connectivity provided via 4G network
 - Safe software implementation, with web GUI and DB logging

