# Heavy Ion Collisions and QGP: Perturbative QCD vs AdS/CFT

#### Stéphane Peigné

peigne@subatech.in2p3.fr

Subatech

LPC, Clermont-Ferrand, 07/05/2010

## Introduction

Heavy ion collisions at RHIC  $\Rightarrow$ 

- strong jet quenching  $\rightarrow$  deconfined
- large elliptic flow  $v_2$  consistent with hydro evolution and small viscosity  $\rightarrow$  perfect fluid

**CLAIM:** *strongly coupled* QGP = sQGP

 $T_c \sim 200 \text{ MeV} \Rightarrow$   $\alpha_s(T \sim 2 - 3T_c) \sim \mathcal{O}(1)$   $\alpha_s(T \to T_c) \gg 1$  ?? no:  $\alpha_s(Q^2 \to 0)$  bounded



#### How to address $\alpha_s(T) \sim \mathcal{O}(1)$ ?

- Lattice QCD
- Perturbative QCD (PQCD)  $\alpha_s(T) \ll 1 \Leftrightarrow T \gg T_c$ extrapolated to  $\alpha_s(T) \sim 1$

PQCD successful at T = 0:

- $Q \gg \Lambda_{\rm QCD} \Rightarrow$  hard processes
- $Q \sim \Lambda_{\rm QCD} \Rightarrow$  jet structure
- AdS/CFT correspondence Maldacena, 1998  $\Rightarrow \lambda \gg 1$  regime of gauge theories extrapolated to  $\lambda \sim 1$ 
  - applies to  $\mathcal{N} = 4$  SYM with gauge group  $SU(N_c)$ , not really to QCD yet...
  - assumes  $\lambda \gg 1$ ,  $N_c \gg 1$

AdS/CFT correspondence has initiated strong theoretical activity

- studies of SYM plasma
- unexpected models for confinement

Karch et al, hep-ph/0602229

light-front holography

Brodsky & de Teramond, 0802.0514

...

#### worth keeping informed about it !

# Plan

1 Phenomenology: revisit arguments for sQGP

- jet-quenching
- elliptic flow  $v_2$

in fact: PQCD extrapolated to  $\alpha_s \sim 1$  consistent with data

- 2 Sketch of AdS/CFT correspondence
  - heuristic description using D-branes
  - application: parton  $\Delta E$  in SYM plasma



#### Warning: knowledge under construction



# 1. Phenomenology

"Jet-Quenching":  $R_{AA}(p_T) = \frac{\sharp \text{ particles in central AA } (p_T)}{A^{4/3}} (\sharp \text{ particles in pp } (p_T))$ 





colored particles

 $\begin{aligned} \mathsf{PQCD} \Rightarrow \Delta E_{\text{induced}} \equiv \Delta E_{\text{rad}}^{\text{med}} - \Delta E_{\text{rad}}^{\text{vac}} \sim \alpha_s \hat{q} L^2 \quad (L < L_{cr}) \\ \text{transport coefficient } \hat{q} = \frac{\mu^2}{\lambda} \sim \alpha_s^2 T^3 \end{aligned}$ 

Medium effects on parton propagation in PQCD

• leading order: elastic scattering

 $\Rightarrow \text{momentum broadening} \quad \langle \Delta p_{\perp}^2 \rangle_L = \mu^2 \frac{L}{\lambda} = \hat{q}L \qquad \hat{q} \equiv \frac{\mu^2}{\lambda}$ 

• next order: broadening induces radiation



extraction of  $\hat{q} = \frac{\mu^2}{\lambda} \sim \alpha_s^2 T^3$  sensitive to  $\alpha_s$ , *T*, and model for AA collision

• In realistic model B. Zakharov  $\hat{q} \simeq 1.5 \,\text{GeV}^2/\text{fm} \gg \hat{q}_{\text{cold}} \simeq \frac{\Lambda_{\text{QCD}}^2}{(1 \,\text{fm})^2} \simeq 0.04 \,\text{GeV}^2/\text{fm}$  $\Rightarrow$  deconfined medium

perturbative QGP or sQGP?

•  $\hat{q}$  consistent with PQCD evaluation to leading-log:  $\hat{q} \simeq 4\pi C_F \alpha_s^2 n \ln\left(\frac{4\pi C_F \alpha_s^2 n L}{\mu^2}\right)$ Arnold, 0810.1026

 $\Rightarrow \hat{q} \simeq 1.7 \,\mathrm{GeV^2/fm}$  (for  $\alpha_s = 0.5$ ,  $T = 300 \,\mathrm{MeV}$ )

# $e^{\pm}$ from D + B decays

naively:  $\Delta E_Q \ll \Delta E_q$ 'dead cone effect'  $\theta_{rad} < M/p_T$  suppressed  $\Rightarrow$  less quenching for heavy flavours PQCD failure? sQGP? • explaining  $R_{AA}(e^{\pm})$  with  $\Delta E_{rad}$  still possible B. Zakharov

•  $\Delta E(E, M, T, L, \alpha_s)$  has a rich structure

S.P., A.Smilga, 0810.5702



• is deconfined medium in (local) thermal equilibrium?  $\rightarrow$  soft particles, anisotropic flow Ollitrault, 1992



anisotropy in  $\phi$ characterized by elliptic flow

$$v_2 = \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_x^2 + p_y^2 \rangle}$$

 $v_2$  large  $\Rightarrow$  strong interactions in almond  $\Rightarrow$  sQGP



 $\frac{\eta}{s} \simeq 0.1 \pm 0.1 (\text{th}) \pm 0.1 (\text{exp})$ Luzum & Romatschke, 2008

### • PQCD: $\frac{\eta}{s} \sim \frac{1}{\alpha_s^2} \gg 1$ • non-perturbative expectation (AdS/CFT): $\frac{\eta}{s}(\lambda \to \infty) = \frac{1}{4\pi} \simeq 0.08$ Kovtun, Son, Starinets, 2004 $\Rightarrow$ PQCD apparently ruled out $\Rightarrow$ nearly perfect fluid produced at RHIC = sQGP

What is actual PQCD prediction for  $\eta/s$ ?



• running coupling:

$$\eta^{-1} \sim \lambda_{\text{transport}}^{-1} \sim \sigma_{\text{transport}} \sim \int dt \, t \, \frac{\alpha_s^2(t)}{t^2}$$
  
**PQCD:**  $\alpha_s(t) \sim \frac{1}{\ln t} \Rightarrow$  enhances contribution of small  $t$   
situation is similar to  $\Delta E_{\text{coll}}(\text{parton})$  S.P & A.Peshier, 2008



don't discard perturbative approach!

- PQCD is predictive, successful at T = 0, even beyond expected range of validity
  - soft hadron energy and  $k_{\perp}$  distributions within jets
- at  $T \neq 0$ , PQCD extrapolated to  $\alpha_s \sim \mathcal{O}(1)$  works well:
  - jet-quenching (light and heavy flavours)
  - viscosity

 $\Rightarrow$  two possible paradigms

• QGP dynamics is perturbative  $\rightarrow$  extrapolate  $\alpha_s \ll 1$ • QGP dynamics is non-perturbative  $\rightarrow$  use AdS/CFT?

# 2. Sketch of AdS/CFT approach

AdS/CFT correspondence  $\rightarrow$  strong coupling limit of gauge theories

• context: Supersymmetric String Theory elementary objects = strings  $\ell_s \sim \ell_{\text{Planck}}$ 

- ▲ ∃ five consistent SST's
- living in d = 10 dimensions
- related by dualities

(Green & Schwarz, 1985)

(Horava & Witten, 1995)

 string theory includes gravitation and D-branes = p-dim objects where open strings end (Polchinski, 1995)





#### Maldacena conjecture (AdS/CFT correspondence):

 $\begin{array}{l} \mathcal{N} = 4 \; SU(N_c) \; \mathsf{SYM} \\ \mathsf{in} \; d = 4 \; \mathsf{Minkowski} \\ \mathsf{spacetime} \end{array} \Leftrightarrow \begin{array}{l} \mathsf{Type} \; \mathsf{IIB} \; \mathsf{SST} \; \mathsf{on} \; AdS_5 \times S^5 \\ ds_{AdS}^2 = \frac{r^2}{R^2} (d\vec{x}^2 - dt^2) + \frac{R^2}{r^2} dr^2 \end{array}$ 

theory in d = 10 equivalent to theory in d = 4 !!

Holographic Principle: *a theory containing gravity must be dual to the boundary theory* 

• symmetry of  $\mathcal{N} = 4$  SYM =  $SO(2, 4) \times SO(6)$ 

= isometry group of  $AdS_5 \times S^5$ 

#### • parameters:

$$g_{_{
m YM}}^2=4\pi g_s$$
 ;  $\lambda=g_{_{
m YM}}^2N_c=(rac{R}{\ell_s})^4$ 

 $\leftrightarrow$ 

$$g_{_{\rm YM}} \rightarrow 0, \ N_c \rightarrow \infty$$
  
with fixed  $\lambda \gg 1$ 

NP quantum calculation in  $d = 4 \quad \leftrightarrow$ boundary SYM theory



 $g_s \ll 1$  (weakly coupled)  $R \gg \ell_s$  (weakly curved)

*classical* supergravity calculation in  $AdS_5 \times S^5$ 

 $\begin{array}{c} \text{conformal group}\\ SO(2,4)\\ \text{has a mathematical}\\ \text{representation on}\\ AdS_5 \end{array}$ 

SYM = non-abelian gauge theory  $\Rightarrow$  AdS/CFT might be used to learn about QCD

SYM

no confinement continuous spectrum conformal supersymmetric

#### QCD

confinement discrete spectrum running coupling not supersymmetric

"AdS/QCD" not guaranteed!!

# **IR-UV correspondence**

• dilatation:  $x^{\mu} = (t, \vec{x}) \rightarrow K x^{\mu}$ 

 $\mathcal{N} = 4$  SYM  $\beta = 0$ scale invariant

 $\begin{array}{l} \text{string side} \\ ds_{AdS}^2 = \frac{r^2}{R^2} (d\vec{x}^2 - dt^2) + \frac{R^2}{r^2} dr^2 \\ \text{invariant under} \\ x^\mu \to K x^\mu \text{ and } r \to r/K \end{array}$ 

IR  $\leftrightarrow$  large  $x^{\mu} \leftrightarrow$  small rUV  $\leftrightarrow$  small  $x^{\mu} \leftrightarrow$  large r



in Minkowski space, typical energy scale  $Q \sim \frac{1}{|x^{\mu}|} \propto r$ 

## AdS/CFT at finite T

■ ∃ another solution: *AdS - Black Hole* metric

$$ds_{AdS-BH}^2 = \frac{r^2}{R^2} (d\vec{x}^2 - f dt^2) + \frac{R^2}{r^2 f} dr^2 \quad ; \quad f = 1 - \frac{r_0^4}{r^4}$$

 $\sim$  black hole singularity at the horizon  $r = r_0 = \pi R^2 T_H$ 

#### • IR-UV correspondence:

processes at  $r \ge r_0 \leftrightarrow$  energy scale  $Q \ge \frac{r_0}{R^2} \sim T_H$ 

AdS-BH metric 
$$\leftrightarrow$$
 introduce temperature  $T = T_H$  in  $\mathcal{N} = 4$  SYM

#### Heavy 'quark' $\Delta E$ in SYM plasma add quark flavour to the picture (Karch & Katz, 2002) add fundamental quark add D-brane down to in boundary theory $r = r_{\min}$ in AdS space D-brane black hole finite T SYM with horizon fundamental quark ► r r=r<sub>0</sub> r=0 $M_{O} = T_{s} (r_{min} - r_{0})$ open string r=r<sub>min</sub> $r = \infty$ heavy quark moving in open string endpoint $\leftrightarrow$ $\mathcal{N} = 4 SU(N_c)$ SYM plasma moving on D-brane

The trailing string picture (Herzog et al, 2006)  $\rightarrow$  study classical dynamics of open string in AdS-BH Nambu-Goto action

 $S_{\rm NG} = -T_s \int d\sigma d\tau \sqrt{-\det g_{ab}(X^{\mu}(\sigma,\tau))}$ 

• drag quark with velocity v along x-axis

• look for string profile x(r,t) = x(r) + vt minimizing  $S_{NG}$ 

$$\Rightarrow x(r) = \frac{1}{2} v \frac{R^2}{r_0} \left[ \frac{\pi}{2} - \tan^{-1}(\frac{r}{r_0}) - \coth^{-1}(\frac{r}{r_0}) \right]$$

$$\xrightarrow{\mathbf{r}_0} \qquad \overrightarrow{\mathbf{v}} \qquad \mathbf{r} \qquad T_s = \frac{1}{2\pi\ell_s^2} \quad ; \quad r_0 = \pi R^2 T$$

$$\Rightarrow \frac{dE}{dt} = \frac{\pi}{2} \gamma v^2 \sqrt{\lambda} T^2$$

$$(\lambda \gg 1)$$
"trailing string"



 $\rightarrow$  suggests energy loss arises from radiation of soft components  $Q \lesssim \sqrt{\gamma} T$  of heavy quark proper field

purely radiative loss, inducing quark  $p_T$ -broadening

### Summary

• RHIC data in intermediate region  $\alpha_s \sim \mathcal{O}(1)$ 

- Two theoretical paths to A-A collisions and QGP
  - perturbative QCD (α<sub>s</sub> ≪ 1)
     only fully predictive approach known
     not ruled out by heavy-ion data
  - AdS/CFT correspondence ( $\lambda \gg 1$ )
    - not yet predictive for QCD
    - rich and promising