

CALICE Si ECAL

Description du Demonstrateur Campagnes de tests et résultats/performances démontrées

Roman Pöschl

The work presented here has received funding from:

Revue IN2P3 – September 2022

1

•

Silicon Tungsten electromagnetic calorimeter

Optimized for Particle Flow: Jet energy resolution 3-4%, Excellent photon-hadron separation

The SiW ECAL in the ILD Detector

- O(108) cells
- "No space"
- => Large integration effort

Basic Requirements:

- Extreme high granularity
- Compact and hermetic
- (inside magnetic coil)

Basic Choices:

- Tungsten as absorber material
 - $X_0=3.5$ mm, $R_M=9$ mm, $\Theta=96$ mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design

- All future e+e- collider projects feature at least one detector concept with this technology
 - Decision for CMS HGCAL based on CALICE/ILD prototypes

 Allows for pixelisationRobust technology • Excellent signal/noise ratio: 10 as design value

Ecal alveolar structure

- Sandwich calorimeter
- 26 layers (+/- 4)
- Thickness: ~20cm, 24 $X_0/1\lambda_1$
- Pixel size ~5x5 mm²
- Expected elm. energy resolution 15-20%/ \sqrt{E}

Roman Pöschl

Physics Prototype

2005 - 2011

Technological Prototype 2010 - ...

- Proof of principle of granular calorimeters
- Large scale combined beam tests

- Engineering challenges
- Higher granularity
- Lower noise

- The goal

- ATLAS LAr ~10⁵ cells
- CMS HGCAL ~10⁷ cells

LC detector

• Typically 10⁸ calorimeter cells • Compare:

Physics Prototype – Response to Electrons

- Non-Linearity O(1%)

Roman Pöschl

C. Carloganu et al. NIM A608 (2009) 372; e-print: arXiv:0811.2354

Physics Prototype – Secondary Tracks in Si ECAL

- Mean number of secondary tracks increases with beam energy ulletas expected from fixed target kinematics for π --tungsten scattering
- Good reproduction of data by simulation with GEANT4 •
- Study motivated inclusion of CALICE Si ECAL into G4 Validation Chain

PhD Theses P. Doublet, (LAL,) H. Li (LAL)

NIM A794 (2015) 240-254; e-print: arXiv:1411.7215

Physics Prototype – Particle Separation

Photon-pion: Separation using beam test data

PhD Thesis K. Shpak (LLR) CALICE-CAN-2017-001

- Test of particle separation using different particle flow algorithms
 - ARBOR, GARLIC developed by in2p3 (LLR, IPNL)
- Full separation power at around 30mm

Algorithm

- Arbor
- Garlic
- Pandora
- PandoraOLD

MCTBparticle

- · · MC:2-photon
- MC:e+e+
- TB:e+e+

SiW Ecal Technological prototype – Elements of (long) layer

• The beam test set ups comprised mainly short layers consisting of one ASU and a readout card each

Digital readout SL-Board (IJCLab)

Note that an additional hub for hardware development is being set up at IFIC/Valencia A. Irles, former IJCLAb/LAL (P2IO HIGHTEC)

SiW Ecal Technological Prototype – Organisation

5.1 – Prototype simulation IFIC, LLR

5.2 – Data analysis IJCLab, IFIC, Kyushu, LLR

PCB Development

- Crucial (and often underestimated) detector component
 - Overview on developed variants

FEV10-12

- ASICs in BGA Package
- Incremental modifications From v10 -> v12
- Main "Working horses" since 2014

FEV COB

- ASICs wirebonded in cavities • COB = Chip-On-Board
- Current version FEV11 COB
- Thinner than FEV with BGA
- External connectivity compatible with BGA based FEV10-12

Tested prototypes were/are equipped with all of these PCBs

IN2P3 Review September 2023

FEV13

 Also based on BGA packaging • Different routing than FEV10-12 Different external connectivity

SiW ECAL Technological Prototype – Development phases

≤ 2018

> 2018

- Up to 7 short layers (18x18x0.5cm³) • Up ~10 X_o
- 1024 channels per layer => 7186 cells
- Technical tests at "MIP level"

- 15 short layers equivalent to 15360 readout cells
 - Up to 21 X₀
- Overall size 640x304x246mm³
 - Commissioned 2020-2022
 - Partially by *recycling* of ASUs from earliear stacks
 - Testbeams (finally) in November 2021 and during 2022

Assembly and QA Chain

(In house) cabling and electronics tests with highly mobile DAQ system

with robot

Metrology of PCBs

Si sensor tests

Wafer Gluing

Detector assembly and commissioning

Deliverable of AIDA-2020

Prototypes until ~2018

PCB FEV10-12 with long adapter card Sensor thickness 325 µm

PCB FEV13

with shorter adapter card Sensor thickness 650 µm

Test beams 2012/13

- DESY 2012 and 2013
 - Simplified ASUs (four ASICS, one sensor)
 - First thorough examination of SKIROC2 ASICs IN2P3 PD T. Frisson (LAL), PhD Thesis J. Rouene (LAL), Nucl.Instrum.Meth. A778 (2015) 78-84

=> SKIROC2 -SKIROC2a

• CERN 2015

 First ASUs with 1024 pads, temporary connection sensor <-> PCB PhD Thesis K. Shpak (LLR)

Roman Pöschl

Testbeam 2017 - Results

Trigger thresholds uniform at around 1/2 MIP S/N ratio ~12 (in auto trigger chain)

- PFA requires:
- a) Access to small signals -> Low trigger thresholds ✓
- b) Tracking in calorimeters -> High MIP detection efficiency ✓

Arxiv:1810.05133

Compact readout

IN2P3 Review Septembe

Current detector interface card (SL Board) and zoom into interface region

SL Board

Complete readout system

- "Dead space free" granular calorimeters put tight demands on compactness
 - Current developments in for SiW ECAL meet these requirements
- System allows to read column of 15 layers <-> to be expected in ILD
 - Important that full readout system goes through scrutiny in beam tests
- Readout piloted by performant firmware

For reference Comparison old/new r/o system

Deliverable of AIDA-2020 and HIGHTEC

SiW-ECAL in beam test @ DESY

Detector Setup

Detector in beam position

trig_sy_layer_4

trig_sy_layer_v

trig_sy_layer_10

trig_sy_layer_14

• Beam spot in 15 layers

IN2P3 Review September 2023

Roman Pöschl

Jihane Maalmi, CALICE Meeting Valencia

- Online Hit Maps and shower profiles

- Further online tools

- MIP gain correction

online suite

Allow for real time beam and detector tuning e.g. Adaptation of beam rates or thresholds

 Pedestal measurement and subtraction Charge measurement and histogramming

These are just a few examples from the powerful

SiW-ECAL Beam tests 2022 – Onlline/Offline Event Displays CALICO

First contained electron showers since physics prototype (2011)

- J. Kunath (LLR)
- Clear showers measured during beam test campaigns
 - Requires full event reconstruction
 - These (and more) "high level" views are available already while a run is going on

- "Particle separation continued"
 - Two electrons "seen" in 20 GeV e- run at CERN

Y. Okugawa (IJCLab)

Hot news - First results from DESY beam test 03/22

J. Kunath, F. Jimenez-Morales, SiW Ecal Analysis Meeting, 22/09/22

- After proper filtering energy resolution in right ballpark for current prototype
- Convergence in agreement data/MC

SiW-ECAL Beam test 2022 – Further observations

mpv_layer7_xy

• We have good layers ...

- over layer surface
- Here white cells are

- ... and not so good layers
- Inhomogeneous response to MIPs
 - Partially even no response at all, in particular at the wafer boundaries
 - Not seen in 2017, degradation observed during 2018/19
 - To be understood, *will require dedicated aging studies*
- Since Summer 2022 access to the different stages of the ASICs
 - => analogue probes, <u>major</u> debugging tool

Adrian Irles

 Homogeneous response to MIPs • > 90% efficiency for MIPs masked cells due to PCB routing understood and will be corrected

Electrical long slab

energy_map_converter_dif_1_1_1 30 Chain of ķ 2 8 detection elements ~2m 50 100 • Very encouraging results in first beam test in 2018 • Credibility for concept as foreseen for e.g. ILD • Issues with signal drop towards extremities Long slab studies will be resumed with new FEV • Adapted for power pulsing, will avoid voltage drop, etc ... Beam test at DESY June

Roman Pöschl

Common developments

SiW-ECAL + AHCAL DAQ test @ DESY in March 2022

Common setup at CERN June 2022

- 15360 + 22000 (full analogue) readout cells
- Successful synchronisation of data recorded with SIW-ECAL and AHCAL
 - First step of knowledge transfer on compact readout system to AHCAL
- Common running makes full use of EUDAQ tools (developed within European projects)
- Common data anlalysis ongoing

Cooling System

Thermal simulation within barrel module

Thermal tests with alveolar structure

- Full design study for ILD like detector and ILC like beam structure
 - Passive cooling is sufficient
- Common development of interface cooling system <-> detector layers
 - Hardware exist, requires test with instrumented prototype

Deliverable of AIDA-2020 Heat exchanger

SL Board design is adapted to Heat exchangergeometry

Full Cooling System – ILD SiECAL

Demonstrator of large leakless loop for CALICE/ILD ECAL

- Thermal model as milestone
- Probes at different heights to establsih full model of Cooling system for large detectors

Deliverable of AIDA-2020

ILD SiECAL – Mechanical structures and studies CALICO

- J1 = clearance between modules for the ECAL
- J2 = Clearance at ECAL edges between ECAL and HCAL
- h = height of the rails 30mm

measurements still to be done...

ILD SiECAL – Endcaps

End-Caps: modular alveolar structure - composite W / Carbone HR - 25,5 t 2 x 12 independent modules - 2 x 540 alveoli

CFRP structures / End-Cap module : thick plates with inserts & longest layer : 3 alveoli L = 2.5 m wall thick. = 0.5mm

Hydraulic network, number of circuits...

- R&D and testbeam campaigns 2012 2018 allowed for studying individual aspects of technological prototype
 - SKIROC ASIC
 - ASUs with 1024 readout cells
 - Different types of PCB
 - Maximum of seven layers in stack
 - Detector response at MIP Level
 - · Elements of assembly chain
 - First experience with long layers

Successful operation of a fifteen layer stack in beam tests at DESY and CERN in 2021 and 2022

- Major milestone for technological prototype
- Demonstration of performance of compact DAQ
- Rich set of data to study detector performance
- First "calorimeter" since physics prototype
 - However, physics prototype had 30 layers
 - 15 layers include recycled older ASUs
- Have already precious feedback on future programme
- Performant infrastructure to conduct conclusive system tests in coming years
- Advanced engineering studies accompany ongoing R&D activities
 - Interplay detector concepts and R&D Collaborations is vital for success

Backup

SiW Ecal – Wafer R&D I

Si Sensor (9x9cm² from 6" wafer)

Wafer specs

Tab 1 : Summary of the substrate characteristics				
	Min.	Тур.	Max.	
N type silicon	-	-	-	
Resistivity (kOhms.cm)	4	5	-	
Thickness (µm), option T1	310	320	330	
Thickness (µm), option T2	490	500	510	
Width (mm), option S1	89.7	89.8	89.9	
Width (mm), option S2	44.7	44.8	44.9	

Definition of specifications for different wafer types: Resisitvity: > 5 k Ω xcm Price: Typically 1000-1500 EUR/wafer (when ordering small quantities)

N-type silicon

Crystal Orientation: <100> or <111>

- In addition we require small leakage current:s under full depletion a few nA/pixel but for cost reasons we tolerate a certain fraction of pixels with higher leakage currents
- Vendors: OnSemi (CZ) and Russian company for physics prototype (~2003) Hamamatsu for technological prototype (since ~2010) Contacts with other vendors (e.g. LFoundry) hibernating mainly for funding reasons The drop-out of Infineon for the CMS HGCAL was/is bad news

SiW Ecal – Wafer R&D II

We (i.e. Mainly Kyushu) have tested several wafer types in previous years

Cut size B		
Cut size C		f
	350µm	
	$ \rightarrow $	

- Cut size determine the actual sensitive area of a wafer
- Different designs mainly on test samples of "baby wafers"
- The "Hamamatsu" standard is still 0 or 1 full guard ring
 - 0 is "fake 0" guard ring, in fact there is still a small guard ring

Observations in recent years (see also backup for more details)

- Split or no guard ring lead to suppression of square events
- In prototype we still use full wafers with 0 or 1 guard ring
- General trend of reduction of bias voltage
- Can operate 500mum wafers at 60-80 V in full depletion

- Towards 8" wafers?

 - Standard thickness 725mum

• General trend (e.g. CMS) is to use 8" wafers • Larger surface/wafer =>smaller cost Impossible to get access to HPK production Lines (CMS HGCAL Production)

SKIROC (Silicon Kalorimeter Integrated Read Out Chip) SiGe 0.35µm AMS, Size 7.5 mm x 8.7 mm, 64 channels High integration level (variable gain charge amp, 12-bit Wilkinson ADC, digital logic)

- Large dynamic range (~2500 MIPS), low noise (~1/10 of a MIP)
- Auto-trigger at $\frac{1}{2}$ MIP, on chip zero suppression
- Low Power: (25µW/ch) power pulsing

