AuxTel flats for spectroscopy

Martín Rodríguez Monroy, Marc Moniez, Sylvie Dagoret-Campagne, Joseph Chevalier - IJCLab 30-11-2022 LSST-France meeting

Main goals

- Obtain special master flats for spectroscopy
 - Different requirements from photometric case
 - We want to keep pixel-to-pixel variations (high frequency) while removing large-scale variations (low frequency)
 - Develop methodology to achieve this
- Show that the wavelength dependence of the flats can be factored out from the spatial dependence
 - Each part (wavelength) of the spectrum would need a flat taken at that wavelength
 - If flat values depend separately on spatial coordinates (x,y) and on wavelength (λ) , we can use a single filter flat for full spectrum

Flat-fielding in photometry

Flat-fielding in spectroscopy

Flat-fielding in spectroscopy

Steps: master bias

- We start with a set of *N* bias images: $B^{(\mu)}(i,j)$ ($\mu=1,2,3,\ldots,N$)
- We create the **master bias**, *B*, such that the pixel (*i*,*j*) is the **median** of the *N* images at the same pixel, that is,

$$ig| \, {\cal B}(i,j) \, = \, median_{\mu} \Big(B^{(\mu)}(i,j) \Big)$$

• We start with a set of *N* flat images with a given filter *b* (FELH0600, BG40, SDSSg): $F_b^{(\mu)}(i,j)$ ($\mu = 1, 2, 3, ..., N$), where $F_b^{(\mu)}(i,j) = F_b^{(\mu)}(i,j) - \mathcal{B}(i,j)$

$$med^{(\mu)} = median_{(i,j)} \Big(F_b^{(\mu)} \Big) \; \Big| \; F_b^{(\mu)}(i,j) \;
ightarrow \; F_b'^{(\mu)}(i,j) = rac{F_b^{(\mu)}(i,j)}{med^{(\mu)}}$$

- We start with a set of *N* flat images with a given filter *b* (FELH0600, BG40, SDSSg): $F_b^{(\mu)}(i,j)$ ($\mu = 1, 2, 3, ..., N$), where $F_b^{(\mu)}(i,j) = F_b^{(\mu)}(i,j) \mathcal{B}(i,j)$
- We take the median over all pixels for each image and normalise by it: $F_{h}^{\prime(\dot{\mu})}$

- There are two different components on the signal:
 - Electronics (which we want to keep) + dust on CCD (focused artifacts)
 - Smooth gradients (vignetting) and extended effects (dust and out of focus artifacts)
 - To capture the smooth / extended components, we apply a **median spatial filter** (window of 40x40 pixels)

- Smoothing:
 - \circ We normalise each segment by their median value (for security, we reject points higher/lower than $\pm 0.5\sigma)$

- Smoothing:
 - \circ We normalise each segment by their median value (for security, we reject points higher/lower than ±0.5 σ)
 - We observe a vertical (also a horizontal) gradient in the upper and lower segments
 - These large-scale variations do not seem to be due to out-of-focus artifacts, but due to electronics
 - We want to remove them while preserving the rest of the large scale variations
 - First approach: divide each row by their median value
 - This removes the gradient but presents some projection issues
 - Work in progress to improve this method (using a fit to the median value per row)

- Smoothing:
 - \circ We normalise each segment by their median value (for security, we reject points higher/lower than ±0.5 σ)
 - We observe a vertical (also a horizontal) gradient in the upper and lower segments
 - These large-scale variations do not seem to be due to out-of-focus artifacts, but due to electronics
 - We want to remove them while preserving the rest of the large scale variations
 - First approach: divide each row by their median value
 - This removes the gradient but presents some projection issues
 - Work in progress to improve this method (using a fit to the median value per row)
 - After removing the gradient, we apply a median filter with window size 40x40 to the upper and lower segments separately

- 1.02

- 1.01

- 1.00

- 0.99

- 0.98

0.90

- We start with a set of *N* flat images with a given filter *b* (FELH0600, SDSSr, SDSSg): $F_b^{(\mu)}(i,j) (\mu = 1, 2, 3, ..., N)$, where $F_b^{(\mu)}(i,j) = F_b^{(\mu)}(i,j) \mathcal{B}(i,j)$. We take the median over all pixels for each image and normalise by it: $F_b'^{(\mu)}$. We take the **median** over the $N F_b'^{(\mu)}$ flat images at each pixel (*i*,*j*): \tilde{F}_b

- We compute the **smooth component**, f_b , by replacing each pixel value by the median in a 40x40 sliding window
- We remove this smooth component:

$${ ilde F}_b o \left. {\mathcal F}_b
ight. \left|
ight. {\mathcal F}_b^{seg}(i,j)
ight. = rac{{ ilde F}_b^{seg}(i,j)}{f_b^{seg}(i,j)}
ight.$$

2D median smoothing: FELH0600

High + low frequencies

2D median smoothing

Profile of a column before and after removing the smooth component

2D median smoothing

0.9

0.8

σ(MF)

-

α(MF/smooth) / 0.6 0.5

0.4

0

20

Profile of a column before and after removing the smooth component

2D median smoothing

Master flat / smoothed

CCD response at 350 nm (laboratory flat)

Raw

Raw-bias

0

- 500

400

300

200

- 100

Impact on spectra (Raw-bias) /flats

0

500

- 400

- 300

- 200

- 100

Impact on spectra (Raw-bias) /flats

500

- 400

- 300

- 200

- 100

2

Factorization of the wavelength dependence

Idea:

Evaluate spatial correlation between flats with different filters

 $ADU(i,j,\lambda) = F_{o.f.}(i,j) imes F_{CCD}(i,j,\lambda) = F_{o.f.}(i,j) imes G_{CCD}(i,j) imes arepsilon_{CCD}(i,j)$

- See if can factorize out the wavelength dependency on the flats:
 - $F_{o.f.}(i, j)$ = out of focus artifacts (vignetting, dust on optical components) = slow pixel to pixel variation (real space) or low spatial frequency (Fourier space)
 - $F_{CCD}(i, j, \lambda)$ = focused artifacts (dust on the CCD, pixel surface variations) = fast pixel to pixel variation or high spatial frequency
 - We examine the **hypothesis** of
- If ~ true, then we could preliminary use a single flat for spectra reduction
- How can we test this?
 - By examining the ratio of flat images at different wavelengths (with different filters)

Factorization of the wavelength dependence: pixel correlation

Factorization of the wavelength dependence: pixel correlation

FELH0600 / BG40

- 1.04

- 1.03

- 1.02

- 1.01

- 1.00

- 0.99

- 0.98

- 0.97

Conclusions and work in progress

- Pixel-to-pixel variations improved (smoothed) on top of the spectrum
 - Effect of the master flats noticeable where we are dominated by light from source (top of spectrum)
 - Negligible effect on zones dominated by sky background
 - Need to know typical fluctuation of individual bias images
- First results on spectra are encouraging
- Work in progress
 - Some refinements are still required (transition between segments)
 - Important for second order sustraction
 - Need to compare with lab flats to evaluate large-scale electronic variations (no out-of-focus artifacts)
 - Estimate impact on the measurement of **equivalent width (EQW)** for stellar lines

Conclusions and work in progress

 We find a good enough spatial correlation (ρ > 0.9) between pixels in flat fields of different colours (FELH0600 and BG40) to factor out the λ dependence

 $ADU(i,j,\lambda) = F_{o.f.}(i,j) imes F_{CCD}(i,j,\lambda) = F_{o.f.}(i,j) imes G_{CCD}(i,j) imes arepsilon_{CCD}(i,j)$

• We propose to preliminary **use a single high spatial frequency master flat** (as previously created) for AuxTel spectra deflatening

$$I = rac{D - \mathcal{B}}{\mathcal{F}}$$

Merci beaucoup

Back-up

Segment numbering convention

2D median smoothing: FELH0600

With smooth component

0.96

1.08

1.06

1.04

1.02

- 1.00

- 0.98

2D median smoothing: BG40

With smooth component

1.08

1.06

1.04

- 1.02

- 1.00

0.98

λ independence of

- The optical system is supposed to be **achromatic**
- We check the histograms **before removing** the smooth component:

FELH0600 is bigger, so there is less vignetting coming from its frame

Identical distributions (vignetting tails) for SDSSg (bluer) and SDSSr (redder)

λ independence of

- The optical system is supposed to be **achromatic**
- We check the histograms **before removing** the smooth component
- Equivalent results for SDSSr are found after removing the smooth component

(SDSSg - SDSSr)

0.96

0.96