

Early SNIa classification using active learning

Marco Leoni

Rubin LSST-France, LPNHE 29 November 2022 Paris

Introduction

Who:

E. Ishida LPC, Clermont

A. Moller ANU, Swinburne

*J. Peloton*IJCLAB, UPSaclay

What: Early discovery of supernovae (no need to say why SNIa are relevant!)

Why Machine Learning: huge amount of data from LSST hence the need for making 'automatic' reliable predictions

When: focus on 2021-2022 using ZTF data

Where: https://doi.org/10.1051/0004-6361/202142715

A&A, **Volume** 663, July 2022

What is active ML?

What is active ML?

Probability

Test set

Add to training set & **retrain**

Remove data from test set

Uncertainty vs Random Sampling

Learning from light curves

Learning from light curves

Early discovery of SNIa

Learning from light curves

Early discovery of SNIa

Actual data for SNIa

...and for nonla

Luckily nonla objects are very diverse hence the fit of such light curves is pretty bad.

A feature
$$x^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$$
 describes the goodness of the fit

Features

$$sigmoid - fit = \frac{c}{1 + e^{-a(\Delta t - b)}}$$

3 features +

II)
$$\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$$

1 feature +

$$SNR = \frac{1}{N} \sum_{i=1}^{N} \frac{o_i}{\Delta o_i}$$

1 feature+

1 feature =

6 features which we use to train RF model

Training using random forests

Parameters for our training

N-trees = 1000

Train Sample ~ 10 alerts (half of which SNIa)

Test Sample ~ 23000 alerts (vast majority of nonla)

300 steps of active learning

Results: accuracy

average over 100 different realisations

Results: accuracy

Results: purity

Results: actual classes

Results: probability distribution

Results: in prod

predictions are matched with those from Bayesian Neural Network models (Anais Moller).

If both models agree predictions are sent out.

from November/2020 to November/2022 Fink communicated 1,533 early SNIa candidates to TNS.

908 (59%) of which: followed-up & spectroscopically by facilities around the world

788 (86%) of which: correctly classified as SNIa

Thanks, for your attention!

Backup

Early discovery: difficulties

- i) from ZTF simulations, we have to reconstruct a dataset of rising light curves.
- ii) Bazin's fit does not work well with a few data points (more later)
- iii) sometimes there are seasonal gaps in the time series (telescope off for a season etc.)
- iv) some of the data points for the flux are negative (with values below -10)

Features importance

Estimate of how many days before max?

- 1.typical length of a light curve last?: 30 data points
- 2. typical length of rising part? (1/3 of the light curve I.e. 10 points)
- 3. Typical prediction sent out? (probably 5 points on average)
- 4. Typical N points before max ? (10 5 = 5)
- 5. Confirm with predicted data from the broker?