

IDENTIFICATION OF ORPHAN GAMMA-RAY BURST AFTERGLOWS IN RUBIN/LSST DATA WITH THE FINK ALERT BROKER

← MARINA MASSON, JOHAN BREGEON →

RUBIN/LSST - FRANCE MEETING 28-30 NOVEMBER 2022

PHD THESIS

CONTENTS OF THE PRESENTATION

1. General context

- **1.1** What is an orphan gamma-ray burst afterglow ?
- **1.2** Gamma-ray burst emission models

2. Simulation of a population of short gamma-ray bursts

- **3.** Analyses of the pseudo-observed light curves
- 4. Conclusion & Perspectives

WHAT IS AN ORPHAN GAMMA-RAY BURST AFTERGLOW?

• **Gamma-Ray Burst (GRB) =** short and highly energetic gamma-ray flash (~ 10⁵¹ erg) involving compact objects

• Orphan GRB afterglow (OA) = optical afterglow without gamma-ray emission \rightarrow No orphan afterglow detected so far! (some candidates but none confirmed)

• OAs important for

• GRB physics and progenitors • Multi-messengers analyses (cosmology to measure H0 with gravitational waves)

WHAT IS AN ORPHAN GAMMA-RAY BURST AFTERGLOW?

Objective > To identify potential orphan gamma-ray burst afterglows in Rubin/LSST data by implementing a filter in the alert broker FINK

• **Gamma-Ray Burst (GRB)** = short and highly energetic gamma-ray flash (~ 10⁵¹ erg) involving compact objects

• Orphan GRB afterglow (OA) = optical afterglow without gamma-ray emission \rightarrow No orphan afterglow detected so far! (some candidates but none confirmed)

• OAs important for

• GRB physics and progenitors • Multi-messengers analyses (cosmology to measure H0 with gravitational waves)

GRB BURST EMISSION MODELS

Forward shock model + electron synchrotron **model** (Van Eerten et al. 2010)

$$F_{\nu}(t_{obs}, \nu_{obs}) = \frac{1+z}{4\pi d_L^2} \int d\Omega R^2 \Delta R \delta^2 \epsilon'_{\nu'}$$

$$(R, \theta_j, u) \Rightarrow F_{\nu}(t, \nu)$$
Progenitor
$$F_{\nu}(t_{obs}, \nu_{obs})$$

Forward shot

ISM

GRB BURST EMISSION MODELS

CONTENTS OF THE PRESENTATION

1. General context

2. Simulation of a population of short gamma-ray bursts

- **2.1** Distribution of the parameters
- **2.2** Results of the simulation
- **2.3** Pseudo-observations with rubin_sim

3. Analyses of the pseudo-observed light curves

4. Conclusion & Perspectives

SOME SIMULATIONS FOR SHORT GRBS

Goal: To simulate somewhat realistic distributions for short GRBs

Studied parameters:

- Core angle θ_c : 2.86 and 8.60 degrees
- Circumburst density n_0 : uniform distribution [0.001; 1.0] cm⁻³
- **Observer angle** θ_{obs} : uniform distribution [0; $\pi/2$] radians

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

SOME SIMULATIONS FOR SHORT GRBS

Goal: To simulate somewhat realistic distributions for short GRBs

Studied parameters:

- Core angle θ_c : 2.86 and 8.60 degrees
- Circumburst density n_0 : uniform distribution [0.001 ; 1.0] cm⁻³
- **Observer angle** θ_{obs} : uniform distribution [0; $\pi/2$] radians

100 000 configurations saved

SIMULATED LIGHT CURVES FOR OFF-AXIS AFTERGLOWS

OFF-AXIS OBSERVABLE MORE THAN 7 DAYS FOR A POWER-LAW JET

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

SIMULATED LIGHT CURVES FOR OFF-AXIS AFTERGLOWS

OFF-AXIS OBSERVABLE MORE THAN 7 DAYS FOR A POWER-LAW JET

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Large diversity of light curves:

6

- bright and short OAs
- faint and long OAs

SIMULATED LIGHT CURVES FOR OFF-AXIS AFTERGLOWS

OFF-AXIS OBSERVABLE MORE THAN 7 DAYS FOR A POWER-LAW JET

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Large diversity of light curves:

- bright and short OAs
- faint and long OAs

⇒ Final fraction of theoretically observable

6

rubin_sim package \implies Realisation of the scheduler simulation for the 10 years of LSST

1- Take time and coordinates of a short GRB 2- Keep only observations inside the Rubin/LSST field of view

https://github.com/lsst/rubin_sim

https://www.lsst.org

Galactic Plan

Wide-Fast-Deep Survey Region

South Celestial Pole

rubin_sim package \implies Realisation of the scheduler simulation for the 10 years of LSST

- 1- Take time and coordinates of a short GRB
- 2- Keep only observations inside the Rubin/LSST field of view
- **3-** Compute spectra at observation time bins in magnitude

https://www.lsst.org

rubin_sim package \implies Realisation of the scheduler simulation for the 10 years of LSST

- 1- Take time and coordinates of a short GRB
- 2- Keep only observations inside the Rubin/LSST field of view
- **3-** Compute spectra at observation time bins in magnitude
- 4- Keep only "real" observation for the right filter
- **5-** Plot pseudo observed light curve

https://www.lsst.org

https://github.com/lsst/rubin_sim

CONTENTS OF THE PRESENTATION

1. General context

2. Simulation of a population of short gamma-ray bursts

3. Analyses of the pseudo-observed light curves

- **3.1** Parameters distributions of the observable orphan afterglows
- **3.2** Defined features of a pseudo-observed light curves
- **3.3** Correlations between the features and the initial parameters

4. Conclusion & Perspectives

9

PARAMETERS DISTRIBUTIONS OF THE OBSERVABLE OAs

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

- theoretical observable configurations
- observable configurations by Rubin LSST

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Defined features:

• Minimal magnitude (= peak) • Time of the peak

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Defined features:

- Minimal magnitude (= peak)
- Time of the peak
- Duration between the first detection and the peak

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Defined features:

- Minimal magnitude (= peak)
- Time of the peak
- Duration between the first detection and the peak
- Increasing rate of the magnitude • Decreasing rates of the magnitude in the 1st third and the last third of the light
 - curve

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Defined features:

- Minimal magnitude (= peak)
- Time of the peak
- Duration between the first detection and the peak
- Increasing rate of the magnitude
- Decreasing rates of the magnitude in the 1st third and the last third of the light curve
- g-r color (expected value for synchrotron emission ~ 0.3)

CORRELATIONS

EO	1	-0.01	0.042	0.13	0.019	0.34	-0.025	-0.27	-0.05	0.067	-0.23	0.094	0.08	0.23	
n0	-0.01	1	0.017	0.2	0.012	-0.096	0.81	0.019	0.023	0.11	0.29	-0.32	0.55	-0.069	
Z	0.042	0.017	1	-0.37	-0.025	0.2	0.022	0.085	-0.046	0.075	0.18	-0.25	0.25	-0.26	
thetaObs	0.13	0.2	-0.37	1	0.046	0.3	0.26	0.24	-0.03	-0.016	-0.12	0.33	0.33	0.5	-
thetaWing	0.019	0.012	-0.025	0.046	1	0.012	0.014	0.0041	-0.065	-0.021	-0.087	0.12	0.0024	-0.069	
log10(E0)	0.34	-0.096	0.2	0.3	0.012	1	-0.12	-0.24	-0.03	-0.12	-0.57	0.23	0.25	0.32	
log10(n0)	-0.025	0.81	0.022	0.26	0.014	-0.12	1	0.078	0.043	0.16	0.33	-0.28	0.69	-0.15	
mag_min	-0.27	0.019	0.085	0.24	0.0041	-0.24	0.078	1	-0.044	-0.13	0.18	0.056	-0.012	0.003	
time_max	-0.05	0.023	-0.046	-0.03	-0.065	-0.03	0.043	-0.044	1	-0.095	0.05	0.099	0.081	0.025	
rate_dec_1	0.067	0.11	0.075	-0.016	-0.021	-0.12	0.16	-0.13	-0.095	1	0.2	-0.21	0.012	-0.014	
rate_dec_3	-0.23	0.29	0.18	-0.12	-0.087	-0.57	0.33	0.18	0.05	0.2	1	-0.91	0.12	-0.25	-
rate_inc	0.094	-0.32	-0.25	0.33	0.12	0.23	-0.28	0.056	0.099	-0.21	-0.91	1	-0.095	0.56	
color	0.08	0.55	0.25	0.33	0.0024	0.25	0.69	-0.012	0.081	0.012	0.12	-0.095	1	0.07	
tmax-t0	0.23	-0.069	-0.26	0.5	-0.069	0.32	-0.15	0.003	0.025	-0.014	-0.25	0.56	0.07 م	1	
	\$	12		thetaop	thetawing	log10/EU	10970/10	mag min	ime mar	ate dec?	ate dec?	ateine	6 ¹⁰ .	thatic	1

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

0.085	0.24	0.0041	-0.24	0.078	-1.0
-0.046	-0.03	-0.065	-0.03	0.043	- 0.8
0.075	-0.016	-0.021	-0.12	0.16	- 0.6
0.18	-0.12	-0.087	-0.57	0.33	-0.4
-0.25	0.33	0.12	0.23	-0.28	- 0.0
0.25	0.33	0.0024	0.25	0.69	0.2
-0.26	0.5	-0.069	0.32	-0.15	0.4
l	× 20105	wing	OFFO	olno	l
,	ther,	neto .	logit .	1001-	1

14

CONCLUSION AND PERSPECTIVES

"Rough" simulations of a "rough" population of GRBs:

 \implies Estimation of the number of theoretically observable OAs: ~ 7%

Pseudo-observations of a "rough" population of GRBs:

 \implies Estimation of the number of observable OAs: ~ 2%

Perspectives

- Take into account the galactic extinction for the pseudo-observations
- Improve the population of short GRBs
- Explore other afterglow models
- Use Elasticc data as a background sample
- Develop a first version of a filter for FINK to identify OAs

All the codes can be accessible at:

https://gitlab.in2p3.fr/johan-bregeon/orphans/-/tree/main/notebooks

THANK YOU FOR YOUR ATTENTION!

HO MEASUREMENT

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

$$= \frac{c(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda (1+z')^{3(1+w(z'))}}}$$

$$d_L(z) = \frac{CZ}{H_0}$$

GRB BURST EMISSION MODEL

Forward shock model + electron synchrotron model (Van Eerten et al. 2010) → Trans-relativistic equation of state + shock jump conditions + single-shell approximation

$$F_{\nu}(t_{obs}, \nu_{obs}) = \frac{1+z}{4\pi d_L^2} \int d\Omega R^2 \Delta R \delta^2 \epsilon_{\nu'}'$$

 $\epsilon'_{\eta \prime}$ = rest-frame synchrotron emissivity

R = radial position of the forward shock

 δ = doppler factor of the emitting fluid with respect to the observer

 Ω = solid angle

 θ **j** = opening angle of the jet **u** = dimensionless 4-velocity of the fluid behind the shock

dL = luminosity distance **z** = redshift

WHAT IS SIMULATED BY THE rubin_sim PACKAGE?

Scheduling	Sk
 Field RA 	•
 Field Dec 	•
 Observation start in MJD 	•
 Visit exposure time 	•
• Filter	•
 Number of exposition 	•
•	•
	•

https://github.com/lsst/rubin_sim https://rubin-sim.lsst.io

y conditions

Airmass Seeing Sky brightness Five sigma depth Cloud Moon position Sun position

. . .

DEEP DRILLING FIELDS

Deep Drilling Field = region of the sky with a deeper coverage and a more frequent temporal sampling

g-r COLOR FROM PSEUDO-OBSERVATIONS

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Linear interpolation of a point

 \implies interpolated magnitude used to calculate the g-r color

The color is approximately constant for all the time

 \implies mean g-r color for a light curve

CORRELATIONS

1.00

0.00

-0.25

-0.50

-0.75

 \implies Correlations between θ_{obs} and E_0 , n_0 and z

								- 1.0
E0	1	-0.01	0.042	0.13	0.019	0.34	-0.025	
n0	-0.01	1	0.017	0.2	0.012	-0.096	0.81	- 0.8
z	0.042	0.017	1	-0.37	-0.025	0.2	0.022	- 0.6
thetaObs	0.13	0.2	-0.37	1	0.046	0.3	0.26	- 0.4
thetaWing	0.019	0.012	-0.025	0.046	1	0.012	0.014	- 0.2
log10(E0)	0.34	-0.096	0.2	0.3	0.012	1	-0.12	- 0.0
log10(n0)	-0.025	0.81	0.022	0.26	0.014	-0.12	1	0.2
	E0	n0	Z	thetaObs	thetaWing	log10(E0)	log10(n0)	ANNEXE 6

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

Marina MASSON | Rubin/LSST - France meeting | 28-30 November 2022

-0.13	0.18	0.056	-0.012	0.003	-1.0
-0.095	0.05	0.099	0.081	0.025	- 0.6
1	0.2	-0.21	0.012	-0.014	- 0.4
0.2	1	-0.91	0.12	-0.25	- 0.2
-0.21	-0.91	1	-0.095	0.56	- 0.0
0.012	0.12	-0.095	1	0.07	0.2
-0.014	-0.25	0.56	0.07	1	0.4

