Blending impact on galaxy clusters with Rubin/LSST **LSST-France, November 2022**

Laboratoire de Physique Subatomique & Cosmologie Supervisors : Cyrille Doux, Marine Kuna

https://gallery.lsst.org/

Manon Ramel

Scientific context Galaxy clusters

Largest gravitationally bound structures in the Universe

- Size of 1 Mpc
- 50 to 1000 galaxies
- $M > 10^{13.5} M_{\odot}$

Tracers of the matter over-densities

• Abundance depends on cosmology

Studied through their counting per bins of mass and redshift

Indirect measurements of cluster masses through weak gravitational lensing

Scientific context Weak gravitational lensing

Lensed ellipticities measurements

UNLENSED

Gravitational lensing profile

Galaxy cluster mass

Cluster count

EARTH

2

Scientific context Weak gravitational lensing

Scientific context Blending

Superposition of galaxies on the images due to:

- the depth of observation
- the **atmosphere**

Depth of observation

Blending increases with **depth of observation**

Scientific context Blending

Superposition of galaxies on the images due to:

- the depth of observation
- the atmosphere

Depth of observation

Blending increases with **depth of observation**

Blending will impact future Rubin/LSST weak lensing data

* 2016, Dawson et al. 2022, Troxel et al.

Table of contents

1. Analysis framework

2. Blending effects in galaxy clusters

3. Impact of blending on weak lensing measurements

Analysis framework Simulated catalogs

Millennium 2005, Springel et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for galaxies and dark matter haloes
- mag < 30, z = 3

7

Analysis framework Simulated catalogs

Millennium 2005, Springel et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for galaxies and dark matter haloes
- mag < 30, z = 3

Identification of blends through catalogue comparison

DESC simulated image

DC2object = object catalog

- Images simulated using cosmoDC2
- Detection of objects
- Measured positions, magnitudes (< 28), shapes...

Analysis framework Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Analysis framework Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Table of contents

1. Analysis framework

2. Blending effects in galaxy clusters

3. Impact of blending on weak lensing measurements

Blending effects in galaxy clusters Regions of high densities

OUTSIDE

Galaxy clusters = high density regions = blending

INSIDE

Blending effects in galaxy clusters Massive dark matter haloes

Blending effects in galaxy clusters Blended systems demography

Surface densities of blended systems in haloes

- Halo of the group = halo of the brightest galaxy
- Look at systems in haloes of mass $M > 10^{13.5} M_{\odot}$

- Proportion of unrecognized blends in massive haloes: $\sim 8\%$
- Higher density of blended systems near the halo centres

Table of contents

1. Analysis framework

2. Blending effects in galaxy clusters

3. Impact of blending on weak lensing measurements

Impact of blending on weak lensing measurements **Cosmic shear and lensing profiles**

• CLMM = developed by DESC collaboration

Cosmic shear γ

https://github.com/LSSTDESC/CLMM

Impact of blending on weak lensing measurements **Cosmic shear and lensing profiles**

• **CLMM** = developed by **DESC collaboration**

Cosmic shear γ

https://github.com/LSSTDESC/CLMM

Impact of blending on weak lensing measurements Impact of the unrecognized blends

Tangential shear profiles

Systematic bias =

Ytwithout blends

Unrecognized blends removed

Impact of blending on weak lensing measurements Impact of the unrecognized blends

Impact of blending on weak lensing measurements **Stack on more haloes to increase statistics**

Stack on 3160 haloes:

Proportion of removed objects: 9%

Next steps:

- Apply weights on individual profiles before stacking
- Bin the results in bins of mass and redshift
- Redefinition of blends

Impact of blending on weak lensing measurements New matching algorithm: friendly

Shuang Liang, Manon Ramel, Cyrille Doux, Marine Kuna, Alex Malz, Ismael Mendoza... https://github.com/LSSTDESC/friendly

- Distribution of blended systems in galaxy clusters
- Impact of blending on shear measurements

Recognized blends

Unrecognized blends

n-1 systems (n > 1)

21

Conclusion

Impact of the unrecognized blends on the detection of individual galaxies

Impact of blending on galaxy cluster mass estimates and on cosmological parameters

Laboratoire de Physique Subatomique & Cosmologie Supervisors : Cyrille Doux, Marine Kuna

https://gallery.lsst.org/

Thank you for your attention !

Appendices Mass function

1

.

Appendices **Choice of the linking length**

Maximize the 1-1 systems = perfect matches

.

Appendices Blended systems demography

25

Appendices Impact of blending on shear profiles (binned profiles)

Appendices Impact of blending on shear profiles (linking length = 1")

