

Status of the CCOB-NB

Camera Calibration Optical Bench – Narrow Beam

J. Bregeon, A. Barrau, C. Combet, M. Migliore, G. Dargaud

Light throughput measurement

Optics aligment constants

- Commissioning of the integrated camera (LCA-283-F)
 - precise measurement of the **optical throughput**
 - determination of the optics alignment/tilt
 - mapping of the **baffle** between L1 and L2
- The Camera Calibration Optical Bench Narrow Beam (CCOB-NB) is a calibrated and $(X,Y)+(\Theta, \Phi)$ positionable pencil beam monochromatic light source.
 - allows the illumination of the focal plane through the full optical system from a variety of incident angles in the 6 spectral bands
 - 2.5 mm wide monochromatic beam ($\delta\lambda\sim$ 1 nm)
 - from 300 nm to 1100 nm

In-operation schema

Designed and built at LPSC, delivered to SLAC in Summer 2021

Rubin

Observatory

Hardware

- 'hyperchromator" from Mountain Photonics with high speed shutter
- big XY table, goniometer, rotative stand, moving arm for NIST diode

Darkened the CCOB-NB XY stage area

CCD mounted on adjustable Z point within tent

Light source + target now darkened

Room for so much dark activities!

- CCOB-NB beam profiling in X, Y, Z
- Testing of full run plan in XY+O¢
- Pinhole filter blank testing with pinhole mounted at fixed Z
- Uniform illuminator beam profiling

Work lead by Andrew Bradshaw @ SLAC

Rubin Observatory

Light throughput measurement

Optics aligment constants

- Goal: verify the full light throughput of the integrated camera, including filters
- "The full LSST beam input on the camera at L1 is an annulus approximately 0.6 meters in diameter subtending angles between 14 to 26 degrees from the optical axis."
- Narrow beam configurations to sample that pupil:
 - high fidelity: choose a single Focal Plane location, using 15 wavelengths in each of the 6 bands and 100 aperture spots.
 - full scan: use 9 wavelengths per band and 10 aperture spots for one location per raft
 - $\rightarrow~{\sim}20000$ images or 1 week of data taking
- Configurations are being prepared just now through raytracing simulations (A. Rasmussen)

Light throughput measurement

Optics aligment constants

- The position and orientation of each optical element is measured by the metrology team with respect to a few reference points of the camera structure.
- The goal is to verify metrology by using the position of secondary images produced by the reflections on optical surfaces of a thin light beam.

"ghosts" package

- Built as a Batoid plugin: ghosts simulation and analysis [github:bregeon/ghosts]
- example: beam at an angle to spread seconday images all over
 - geometry with no filter, 1 main spot
 + 20 ghosts spots

Observatory

ENERGY

11

"ghosts" representation

- ghosts are characterized by their position, diameter and flux
- simple algorithm based on the truth of the simulation
- DM has a peak finder algorithm that can be tuned for ghosts images

Observatory

"ghosts" representation

Rubin Observatory

ENERGY

12

Office of

Science

bean	n_id	geom_id	index	name	pos_x	std_x	pos_y	std_y	width_x	width_y	radius	radius_err	flux	surface	n_pixels	pixel_signal
0	0	0	0	(L1_exit, L1_entrance)	0.056498	0.000271	0.026311	0.000271	0.001066	0.001088	0.000538	1.096830e-05	0.301186	0.910748	8197	9.433834e+03
1	0	0	1	(L2_exit, L1_entrance)	0.017302	0.000894	0.168538	0.000894	0.003523	0.003537	0.001765	7.046005e-06	0.277805	9.785781	88072	8.098324e+02
2	0	0	2	(L2_exit, L1_exit)	-0.016875	0.001376	0.281373	0.001376	0.005421	0.005473	0.002724	2.618720e-05	0.289259	23.303916	209735	3.540867e+02
3	0	0	3	(L2_entrance, L1_entrance)	0.121685	0.000010	-0.059080	0.000010	0.000040	0.000041	0.000020	3.666263e-08	0.289259	0.001287	12	6.409390e+06
4	0	0	4	(L2_entrance, L1_exit)	0.100468	0.000345	0.018343	0.000345	0.001359	0.001379	0.000684	9.837642e-06	0.301186	1.471606	13244	5.838411e+03
5	0	0	5	(L2_exit, L2_entrance)	-0.062959	0.001049	0.239891	0.001049	0.004133	0.004244	0.002094	5.506202e-05	0.301186	13.778513	124007	6.235682e+02
6	0	0	6	(L3_exit, L1_entrance)	0.142590	0.000172	-0.104178	0.000172	0.000682	0.000703	0.000346	1.063578e-05	0.256238	0.376619	3390	1.940856e+04
7	0	0	7	(L3_exit, L1_exit)	0.184959	0.000056	-0.079549	0.000056	0.000219	0.000227	0.000112	4.084139e-06	0.266804	0.039150	352	1.944048e+05
8	0	0	8	(L3_exit, L2_entrance)	0.099324	0.000412	0.032529	0.000412	0.001622	0.001622	0.000811	2.386852e-07	0.277805	2.066674	18600	3.834587e+03
9	0	0	9	(L3_exit, L2_exit)	0.074802	0.000109	-0.014935	0.000109	0.000425	0.000413	0.000209	5.984739e-06	0.289259	0.137695	1239	5.992662e+04

- the thin beam is powerful: 10e9 photons per second, but is equipped with a high speed shutter (down to ~20 ms)
- main spot will be highly saturated, so as a couple of ghosts

Ghosts images visualization

- 2 series of ghosts images for the same incident beam (just 10 cm off-axis)
- 2 randomized camera geometries

Observatory

- start from 2 lists of beam spots parameters
- consider statistical error on spots positions and diameters
- compute distance for each ghost spot to all neighbors, to find the nearest neighbor and associate 2 spots
 - might not find the correct one?
- compute a pure Euclidean distance between the 2 series of spots
 - similar to a bare χ^2
- also tried to add scaled spot diameter as additional parameter
 - does not seem to be really necessary

Distance formula

ghost spot $g_{r,i}$ has parameters $[x_{r,i}, dx_{r,i}, y_{r,i}, dy_{r,i}, rad_{r,i}, drad_{r,i}, p_{r,i}]$ for position in x and y with uncertainties dx and dy, radius rad and uncertainty drad and intensity.

the 2D Euclidean distance between 2 ghosts spots is defined as:

$$d(g_{r,j},g_{s,i}) = \sqrt{(x_{s,i}-x_{r,j})^2 + (y_{s,j}-y_{r,j})^2}$$

and the associated error is:

$$\sigma_d(g_{r,j},g_{s,i}) = \sqrt{(dx_{s,i}^2 + dy_{s,i}^2) + (dx_{r,j}^2 + dy_{r,j}^2)}$$

with the distances spot to spot between the 2 lists $(g_{r,j1..m}, g_{s,i1..n})$, one can them associate each spot in the S_s set with the closest spot in the S_r set.

we note g_{r,k_i} the closest ghost spot in S_r to the ghost spot $g_{s,i}$ in S_s .

the reduced distance between 2 sets of ghosts spots may then be defined as follow:

$$L = rac{\sqrt{\sum_{i=1}^{n} rac{d(g_{s,i},g_{r,k_i})^2}{\sigma_d(g_{s,i},g_{r,k_i})^2}}}{n}$$

if 2 sets of beam spots are the same L=0, and if they are really close then L should be small.

17

- a few tests with simple 10 cm off-axis beam
 - left: rotating L2 around X with all optics aligned
 - center: rotating L2 around Y with L2 misaligned around X
 - right: shifting L2 along X with many optics misaligned

ightarrow distance seems to be well behaved. . .

- Some more work to be done on the distance (add flux?)
- Strategy for the real data analysis
 - build a large data base of simulations
 - run some kind of MCMC to find the best match, based on the distance between to sets of ghosts
 - ightarrow need to develop software
- Verify that the geometry used in my simulation matches current metrology
- Prepare data taking configurations
- Prepare data reduction: from images to ghosts with the DM stack

Light throughput measurement

Optics aligment constants

- CCOB–NB designed and built at LPSC, sent and received at SLAC in Summer 2021 (after a long journey)
- Characterize the optical throughput of filter (and the whole optical system)
- Determine optics alignment constants through ghosts images analysis
 - current focus [github:bregeon/ghosts]
 - getting ready for data taking at SLAC in Spring 2023
 - and on the summit when the camera is reassembled there!

- Marc Marton (SDI, conception mécanique, montage)
- Emmanuel Tourba (Electronique, câbleur)
- Eric Lagorio (Electronique)
- Myriam Migliore (Pôle Accélérateur et SI)
- Guillaume Dargaud (Contrôle Commande)
- Valérie Favre (administration)
- Nicolas Andres (stagiaire M1 2019)
- Aurélien Barrau
- Johan Bregeon
- Cécile Renault

Merci à tous !

- Confluence page: CCOB Thin Beam
- Confluence page: CCOB Thin Beam Hyperchromator
- [github:bregeon/ghosts]

