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I. Introduction



It is composed of :

1. A tunable monochromatic light

2. An optic device able to recreate a parallel beam from a point source

Introduction : What is a CBP ?
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CBP, for Collimated Beam Projector, is a device able to shoot:

● a known quantity of photons 

● at a known wavelength 

● and in a parallel beam. 
The goal is to mimic a monochromatic star of known flux, to calibrate the 

response of an instrument and its filters.
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Setup device

Solar cell

CBP optics

StarDice Telescope CBP optics

CBP response measurement StarDice response measurement

Laser

Integrating sphere w/ 
monitoring instruments
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II. Instruments



6

Integrating sphere

Two instruments in the integrating sphere, to 
monitor the input light :

a. A spectrograph to monitor the laser 
wavelength

b. A photodiode to monitor the flux quantity 

Photodiode

Laser

Spectrograph

Integrating 
sphere

Pinhole of 
variable size

CBP optics
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How do we measure our responses ?

CBP response R
CBP

 [𝛾.C⁻¹]

StarDice response R
SD

 [ADU.𝛾⁻¹]

● Q
solar

 : solar cell charges [C]

● Q
phot

 : photodiode charges [C]

● Q
ccd

 : stardice charges [ADU]

● 𝜖
solar

 : solar cell quantum 

efficiency  [C.𝛾⁻¹]

● e = 1.6x10⁻¹⁹ [C]
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Setup device

Q
solar

R
CBP

R
tel

R
CBP

CBP response measurement StarDice response measurement

Q
phot

Q
phot

Q
ccd
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a. Spectrograph
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Spectrograph wavelength calibration

● Acquisition of Hg-Ar spectra before and 

after CBP run

● Apply Spectractor line detection

● Fit 3rd order polynom using SNR>20 

lines to map detected and tabulated 

wavelengths, with uncertainties

● Rescale uncertainties to get reduced 

chi2~1

● Save the polynom coefficients and their 

covariance matrix
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Wavelength calibration total uncertainties
● Total uncertainties globally below 0.1nm

Solar cell runStardice run

0.015nm floorCalib uncertainties

Angstrom level
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b. Photodiode
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Monitoring photodiode

● Photodiode plugged to the integrating sphere and connected to a 

electrometer

● Monitor the total charge collected in the photodiode Q
phot 

in Coulomb 

5 bursts of light
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c. Solar Cell
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CBP output with Solar Cell

● Large solar cell calibrated with a NIST photodiode

● Measure the photons at the output of the CBP

Caption : Quantum efficiency of the solar cell 
(Measured in Brownsberger et al., 2021)

𝜖SC
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CBP output with Solar Cell

● Large solar cell calibrated with a NIST photodiode

SC total charge Q
solar 

in Coulomb 

Caption : Quantum efficiency of the solar cell 
(Measured in Brownsberger et al., 2021)

𝜖SC



17

d. StarDice telescope
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StarDice telescope

StarDice Telescope

Andor camera
CCD 1024x1024

● Find spot position on camera

● Aperture photometry with dark subtraction

● 3 pinholes: 75um, 2mm and 5mm

⇒ Measure Q
CCD

 the photons collected by the camera in ADU
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e. Logic timer
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Logic timer

Homemade device with 3 inputs to listen to :

● Laser burst trigger

● Solar cell electrometer clock

● Photodiode electrometer clock

⇒ It allows the synchronization of all the clocks. 

This has played a major role in the improvement 

of the analysis.
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III. Measurements
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Different measurements have been made : 

● Spectrograph calibration

● CBP response :

○ Solar Cell measurement ; 5mm pinhole

○ Long and short distance (~16cm difference) ; 5mm pinhole

○ Cap on the CBP to measure ambient light

● StarDice response : 

○ Same position ; every camera filter ; 75µm, 2mm, 5mm pinhole

○ 8 positions on the mirror ; 75µm pinhole (“pupil stitching”)

■ 4 positions on different quadrants but same radius 

■ 4 positions at different radius but same quadrant

○ (4x4) positions on the CCD ; 75µm pinhole

Plan
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a. CBP response
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CBP transmission, 5mm Solar Cell measurement ; 5mm pinhole

Statistical precision

~ 0.2% for [400-1000] nm
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b. StarDice response
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StarDice response, 5mm

Image for 5mm pinhole for light at 841nm

● Statistical precision around 0.4% for [400 - 1000] nm
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StarDice filters transmission, 75µm 

● Precision around 0.4% for every 
filters in 

● Wavelength resolution high 
enough to see the slopes of the 
filter edges
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StarDice grating transmission, 75µm 

Image for 750 nm

Order n=1
Order n=0
Order n=-1

Grating → disperse light to observe 
absorbing rays

● Uncertainty around 0.3% for 1st order 
in [400 - 1000] nm range



Summary

● Good things :
○ The CBP has converged to a working end-to-end design !
○ Calibration of the CBP itself at the per mil level
○ First time a CBP measures the response of a telescope and its filters at 

the per mil level

● Things to do :
○ Build a model for StarDice response in function of the position on the 

primary mirror
○ Intercalibration between the 75µm and 5mm pinholes
○ Finish to write the paper 
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IV. RubinCBP @ Tucson
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Rubin CBP 

● Collimated Beam Projector to calibrate Rubin 

telescope : focal plane and filters responses and 
uniformities (artificial star-flats)

● How ? with artificial constellations of 
monochromatic stars calibrated in flux and 

wavelength: multiple pinhole mask at the focal 

plane of a small revert telescope, pointing at LSST
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Rubin CBP

Solar cell

Counterweight

Integrating 
sphere

CBP 
telescope

Laser fiber

Photodiode
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Rubin CBP masks

● Masks can be rotated, made by Harvard or 

Tucson mechanical workshops

● Still needs to decide how the constellation 

must look like : 
○ a constellation of stars
○ with one star per amplifier/CCD
○ not too small
○ not too big
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First data

● Visible burst in solar cell with 2.5mm pinhole, 200 laser pulses, at all wavelength

● Burst timings from logic timer device (Arduino) not available for the moment

Photodiode Solar cell
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First data

Ratio of charges : CBP response ! At least some numbers on a plot…

More than preliminary : 
unreliable at this stage

35



Summary

● Good things :
○ Light in the instruments
○ Good portability of the StarDice CBP code to 

the Rubin CBP data
○ Team in place: LPNHE+Harvard+NoirLab

● Things to do :
○ Characterize the instruments (spectrograph, 

electrometers)
○ Design masks to map and characterize 

LSSTCam focal plane and filters
○ Ask DM to perform aperture photometry on 

CBP pinhole images
○ Ghost/distortion analysis with ImSim (LSST 

image simulator)
36

ImSim simulation CBP+LSST

CBP
LSST
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Thanks for your attention
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IV. Major corrections
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a. 532nm contamination 
correction
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Spectrograph wavelength calibration

● Load the parameters, make the mapping and propagate detection uncertainties plus 

calibration uncertainties
○ contribution of 0.03nm systematic uncertainty from calibration in the visible range, more outside
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532nm contribution : extraction

● ⍺(λ) = Q
SP,532

/Q
SP

(λ) in the [532 - 644] nm range

● Within the [560 - 644] nm range, Q
SP,532

 and Q
SP

(λ) 

are well separated so we can make a good 

estimation of ⍺

● Below 560 nm, the shape of the psf in the 

spectrograph induces a superposition between 

the two peaks 

⇒ We fit the values of ⍺(λ) between [560-644] nm for 

all the runs at a given QSW and we extrapolate in the 

range of [532-560] nm
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532nm contribution : extraction

● ⍺(λ) = Q
SP,532

/Q
SP

(λ) in the [532 - 644] nm range

● Within the [560 - 644] nm range, Q
SP,532

 and Q
SP

(λ) 

are well separated so we can make a good 

estimation of ⍺

● Below 560 nm, the shape of the psf in the 

spectrograph induces a superposition between 

the two peaks 

⇒ We fit the values of ⍺(λ) between [560-644] nm for 

all the runs at a given QSW and we extrapolate in the 

range of [532-560] nm
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532nm correction : application
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532nm contribution : g filter demonstration

g filter : cut after ~560nm

→ we don’t see the main 

wavelength light, but only 

the 532nm contribution
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532nm contribution : g filter demonstration
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b. Ghost correction
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Ghost photometry

CCD

Window

Main spotGhost
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● Φ0 : Main spot flux 
● ΦG : Ghost flux
●
● 75µm photometry : Φtot = Φ0
● 5mm photometry : Φtot = Φ0 + ΦG

We consider that the contribution of the ghost is a 
function of lambda f(λ) :

ΦG  = f(λ) x Φ0

We can deduce the main spot contribution for the 
5mm pinhole :

 Φ0 = Φtot/(1+f(λ))

Ghost correction

5mm pinhole

75µm pinhole
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Produces a stack of all the similar datas

→ Create a mask for the main spot and the ghost 

Ghost photometry : looking for the masks
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Ghost photometry : fitting positions

● Find the barycenter of the main spot and mask it
● Fit the best position for the ghost with a gaussian filter step by step
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Ghost photometry : fitting positions

Ghost mask Data with main spot masked

Fit with a high sigma → reduces the sigma and fit again → until sigma=1
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Ghost photometry : background subtraction

Find ghost position and draw the vertical symmetric according to the main spot position

→ calculate the mean of the symmetric photometry and subtract it
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Ghost photometry : same mirror positions
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Ghost photometry : different radius positions
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Ghost photometry : spline with all data (except radius 1)
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Ghost photometry : spline with all data (except radius 1)

Noise ? 
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Ghost photometry : spline with all data (except radius 1)

Noise ? 
Oscillations ?
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Ghost photometry : IR oscillations
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Ghost photometry : IR oscillations
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c. Intercalibration 
5mm/75µm
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Intercalibration 5mm/75µm : goals

The pinholes are not the same when we shoot in the Solar Cell (5mm) or in the StarDice 

telescope (75µm)

● See if the ratio between the 5mm and 75µm pinhole is flat or not

● Understand the ghost contribution in the 5mm case

● Correct the ghost contribution thanks to the analysis with the 75µm
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Growth curve

Why this growth after 250 pixels radius even when there is nearly no ghost ?
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Growth curve : log scale

Why this growth after 250 pixels radius even when there is nearly no ghost ?
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Growth curve : beyond 250 pixels radius

Same image but in logarithm and with a vmax 

value to see the contrast

3 visible elements :

● The border of the pinhole are faint

● The diffusion over the diaphragm

● The ghost in the left

⇒ Present at all wavelengths, so why is it higher 

in IR ?
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Growth curve : evolution of the 5mm hole
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Ratio 75µm/5mm
Ratio 75µm/5mm decrease in the IR, it can be either :

● 75µm decreases → not what we observe

● 5mm increases → what we observe
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Ratio 75µm/5mm
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Radius
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Filter edges



Rubin CBP masks

Numbers to have in mind:

● CBP focal length is 625mm, primary mirror diameter is 330mm
● LSST + CBP magnification factor is 16 (LSST focal is 8.4m x 1.2 = 10.1m): 

○ 100um on mask = 1600um on LSSTCam = 160 pixels = ~⅓ amplifier
○ max size to have a spot that fit an amplifier + annulus to estimate dark is 150um

● mask holder inner part is 25.4mm wide
○ LSST full focal plane projected on mask is 600mm/16 = 38mm

● N_CCD = 189, N_amplifiers = 8 N_CCD = 1512 => constellation of 
N_pinholes = 1512 stars

● Effective pinhole diameter : D_eff = sqrt(N_pinholes) D_{1 pinhole}
○ 1 star per amplifier : D_eff = sqrt(1512)x150um = 5.8mm
○ 1 star per CCD : D_eff = sqrt(189)x150um = 2.1mm


