Prospects for Detector concepts / Calorimetry

Vincent Boudry

Institut Polytechnique de Paris

FCC FR+IT 24/11/22, Lyon

Detector Concepts 3++

D. Contardo (Mod)

Concepts defined 1st order by: CALO + TRACKER + SOLENOID Position

Discussed:
Here Brass
Uniform with
S. Steel

CMS-like solenoid w/ calorimetry inside B up to 4T above Z-peak energy

- > Studies in calorimetry outside concepts with parameterized X/X_0 and λ for performance and to assess if B > 2T possible
- ightharpoonup Realistic field maps modeling in simulation to study systematics on p_T measurement

IDEA: Dual Readout (only)

Romualdo Santoro

Principle:

- Compensation of the imbalance EM/Had resp.
 by 2 measures with ≠ e/h : Scint and Cherenkov
- χ measured in beam tests

$$E_S = E \left(f_{\text{em}} + \left(\frac{h}{e} \right)_S (1 - f_{\text{em}}) \right)$$

$$E_C = E \left(f_{\text{em}} + \left(\frac{h}{e} \right)_C (1 - f_{\text{em}}) \right)$$

$$E = \frac{\left(E_S - \chi E_C\right)}{1 - \chi} \qquad \boxed{\chi = \frac{1 - \left(\frac{h}{e}\right)_S}{1 - \left(\frac{h}{e}\right)_C}} \quad \begin{array}{c} \chi \text{ does not depend from energy and particle type.} \\ \text{It is detector dependent: it can be measured on beam tests} \end{array}$$

- A small prototype has been tested on beam in 2021 (@DESY and @CERN) with electrons ranging from 1 to 100 GeV
- The prototype was made of brass capillary tubes (2 mm outer diameter) each hosting a fibre of 1 mm diameter: : (10x10x100 cm³)
- There are 9 towers containing 16x20 capillaries with alternating scintillating and clear fibres
- The central tower is equipped with SiPMs while the surrounding towers are connected to PMTs (costs saving reason)

Prelim data

IDEA: HiDRa simulations

Electrons: Brass & S. Steal

Pions:

IDEA: Integration

Quite challenging integration that requires:

- Precise assembly procedure
- Compact components: there is almost no space in the rear part of the calorimeter
- SiPMs
- Mechanical support
- Cabling and readout to serve all channels

150 mn

- Two Citiroc1A for reading out up to 64 SiPMs
- One (20 85V) HV power supply with temperature compensation
- Two 12-bit ADCs to measure the charge in all channels
- Timing measured with 64 TDCs implemented on FPGA (LSB = 500 ps)
- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)

IDEA: Dual Readout with Crystal (High precision ECAL)

Marco Lucchini

A calorimeter with 3%/VE EM energy resolution has the potential to improve event reconstruction and expand the landscape of possible physics studies at e⁺e⁻ colliders

- **CP violation studies** with B_s decay to final states with low energy photons
- Clustering of π⁰'s photons to improve performance of jet clustering algorithms
- Improve the resolution of the recoil mass signal from Z→ee decays to ~80% of that from Z→ µµ decays (recovering Brem photons)

IDEA: Dual Readout with Crystal (High precision ECAL)

Ongoing R&D: calorimeter cell optimization

- Optimization of crystal cross section (granularity) and longitudinal segmentation
- Evaluation of light output for different crystal and SiPM geometries
- First experimental results available to validate expectations from Geant4 ray-tracing simulation

IDEA: Dual Readout with Crystal

(High precision ECAL)

The **dual-readout method** in a hybrid calorimeter

$$E_{HCAL} = \frac{S_{HCAL} - \chi_{HCAL}C_{HCAL}}{1 - \chi_{HCAL}}$$

$$E_{ECAL} = \frac{S_{ECAL} - \chi_{ECAL}C_{ECAL}}{1 - \chi_{ECAL}}$$

$$E_{total} = E_{HCAL} + E_{ECAL}$$

Dual-readout method confirms its applicability in a hybrid calorimeter

- Response linearity to hadrons restored within ±1%
- Hadron energy resolution comparable to that of the fiber-only IDEA calorimeter

Jet resolution: with and without DR-pPFA

Jet energy resolution and linearity as a function of jet energy in off-shell e⁺e⁻→Z*→jj events (at different center-of-mass energies):

- crystals + IDEA w/o DRO
- crystals + IDEA w/ DRO
- crystals + IDEA w/ DRO + pPFA

Vincent.Boudry@in2p3.fr

Calorimony community production or leyon, *locative* c

More details in:

2022 JINST 17 P06008

Noble Liquid EM Calorimeter

Nicolas Morange

- An appealing option for FCC-ee
 - Good energy resolution
 - High(-ish) granularity achievable
 - Linearity, uniformity, long-term stability

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X_o
 - Designing for improved energy resolution
- Significant progress in the past year

Aiming for ~ ×10 ATLAS granularity

- High granularity required for better PFlow performance (few million cells)
- >6 compartments to compensate LAr gap widening

Optimizing the energy resolution

$IAr \rightarrow IKr$:

- - No improvement in resolution Expected impact on PID to
 - be studied

Straight planes → trapezoidal absorbers

- Better sampling fraction in first layers
- Small gain in resolution
- Feasibility?

- MVA calibration
 - improves constant term
- Clustering
 - Large effect, to be studied further

Noble Liquid Calorimeters: R&D's

Next generation cryostats

Minimizing dead material in front of calo

- Crucial for low energy measurements at FCCee
- Ongoing R&D for cryostats using new materials and sandwiches
 - Generic R&D at CERN as cryos will be used for solenoids all experiments
 - Synergy with progress in aerospace
 - Test microcrack resistance, sealing methods, leak and pressure tests
 - Address CFRP/Metal interfaces
- Promises for "transparent" cryostats: few % of X_o!

- High density feedthroughs needed in case readout electronics outside of cryostat
- Aim for ~ ×5 density and ~ ×2 area wrt ATLAS

Successful R&D on connector-less feedthrounds at CERN

- Prototypes of 3D-printed epoxy resins structures with slits for strip cables, glued to the flange
 Leak tests and pressure tests at 300 K and 77 K

 Suitable materials identified: G10 structure with slits +
- indium seal + Epo-Tek glued Kapton strip cables
 Stress simulations of complete designs at 300 K and 77 K

- Detailed measurements of cell properties and cross-talk effects
- Frequency behaviour

 Good overall agreement with simulations on large frequency range

Larger scale electrode @ CERN

1:1 scale θ chunk: 16 towers with different layouts

Noble Liquid

Noise and cross-talk considerations

Goals

- Low noise to measure photons down to 200 MeV
- Measure MIPs with good S/N
- Sub-percent cross-talk

Cold electronics?

Noise master formula:

$$N \sim C_d \sqrt{rac{4kT}{g_m au_p}}$$

- Cold electronics: gain on $C_{d'}$ T and g_{m}
- Extremely low noise easily achievable
- Challenges:
 - Heat dissipation
 - Difficulty for repair
- We know how to do it:
 - DUNE example
- Very first studies
 - HGCROC in Liquid N at IJCLab

Towards a detector concept

- Based on IDEA design but using Noble Liquid for ECAL
- Performance impact of position of solenoid to be studied in simulation

Implementation in FCCee Fullsim

- ECAL endcaps
 - Parallel disks, 1.5mm Pb, 2mm LAr gaps
 - Total thickness 45cm
- HCAL barrel
 - Based on Iron-Scint Tile design for FCChh
 - 13 compartments, $\Delta\theta \times \Delta\phi = 0.025 \times 0.025$
- Cryostat: more realistic implementation

Vincent.Boudry@in2p3.fr

Calorimetry summary | FCC FR+IT @

CALICE: Highly Granular Calorimeters

Roman Pöschl

CALICE SIW-ECAL

- 15 short layers equivalent to 15360 readout cells
 - •Up to 21 X
 - Overall size 640x304x246mm³
 - •Flexible mechanical structure to adapt to beam conditions
- Commissioned 2020-2022
 - ~450000 calibration constants for one ASIC feedback capa setting

Testbeams (finally) in November 2021 and during 2022

Vincent.Boudry@in2p3.fr

Calorimetry summary | FCC FR+IT @ Lyon, 23/1

CALICE: Scint-ECAL

- Sc-ECAL prototype: successful construction during 2019-2020
 - Effective granularity 5×5mm², 32 sensitive layers composed of **scintillating strips** and CuW absorber plates
 - 6700 readout channels in total
- Successful commissioning and long-term cosmic-ray tests (2020-2021)
 - Calibration of all SiPMs and SPIROC2E chips; MIP response calibration

• Tracking performance: achieved better than 2mm positioning resolution

Gearing up for beam test at CERN in October 2022

CALICE AHCAL

highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles optimised for uniformity

- · fully integrated design
 - · front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers -> power pulsing
- scalable to full detector (~8 million channels)
- geometry inspired by ILD, similar to SiD and CLICdp
- HCAL Base Unit: 36*36 cm2, 144 tiles, 4 SPIROC2E ASICs
 - slabs of 6 HBUs, up to 3 slabs per layer

F/I FCC Workshop 2022

- · Large enough to contain hadron showers
 - 38 active layers of 72*72 cm²
 - · 4 HBUs per module
 - in total: 608 SPIROC2E ASICs, ~22000 channels
 - SiPMs: Hamamatsu S13360-1325PE
- · All modules interchangeable
- Built with scalable production techniques in ~2 years
- Operated in beam tests with muons, electrons and pions at CERN SPS in 2018
 - · 3 weeks of beam time
 - · Collected O(100) mio events
 - Very stable running
 - · Nearly noise free
 - · < 1 per mille dead channels

CALICE SDHCAL

- Detectors as large as 3x1m² need to be built
- Electronic readout should be the most robust with minimal intervention during operation.
- Mechanical structure with minimal dead zone
- Include time information SDHCAL -> T-SDHCAL

Large RPC detectors

Large mechanical structure

Flatness

Using roller leveling

Reduced dead zone Using electron beam weilding

Highlight II: SDHCAL testbeam

2 weeks of beam test at CERN SPS: 14 - 28 September 2022

- Observation in previous beam tests: (slightly) different reconstructed hadron energy in two beam lines at SPS, which have different mixtures of pions and protons
- Goal for this testbeam: use Cherenkov detectors to separate pions and protons
- Expectation: pion showers have higher EM fraction and more hits
- Optimise α, β, γ separately for pions and protons
- Investigate calorimeter quantities that might allow pion/proton distinction

JC FR+IT @ Lyon, 23/11/2022

CALICE for FCC-ee

Timing

- A look to 2030 make resolutions between 20ps and 100ps at system level realistic assumptions
- At which level: 1 MIP or Multi-MIP?
- · For which purpose ?

· Timing is a wide field

- •Mitigation of pile-up (basically all high rate experiments)
 •Support of PFA unchartered territory
- Calorimeters with ToF functionality in first layers?
- Might be needed if no other PiD detectors are available (rate, technology or space requirements)
- In this case 20ps (at MIP level) would be maybe not enough
- Longitudinally unsegmented fibre calorimeters

Bottom steel plate

Power for continuous operations

- Power Pulsing reduces dramatically the power consumption of detectors
- e.g. ILD SiECAL: Total average power consumption 20 kW for a calorimeter system with 108 cells
- Power Pulsing has considerable consequences for detector design
- · Little to no active cooling
- · => Supports compact and hermetic detector design
- · Have to avoid large peak currents
- · Have to ensure stable operation in pulsed mode
- . Upshot: Pulsed detectors face other R&D challenges than those that will be operated in "continuous" mode
- · Tendency: Avoid also active cooling in continous mode

Requires thorought evaluation in simulations - ILD

Typical sampling calorimeters:

$$\frac{\sigma_E}{E} \sim \frac{10\% - 15\%}{\sqrt{E}}$$

Crystal calorimeters:

$$\frac{\sigma_E}{E} \sim \frac{1\% - 2\%}{\sqrt{E}}$$

Production under control:

- o grains are similar to larger crystals
- homogenous production

Granular scintillator

- local light collection
 by fibre à la LiquidO
 - Local sampling (WLS fibre)

Grain of Crystal

- 0.5-1.0 mm
- Prod (ISMA):
 - Homegenous prod Grains / plates (²⁴¹Am response)
 - BGO for comparison

ZnWO₄:

- d = 7.62, n=2.1 λ = 480 nm, 10k γ/MeV
- Bath of CH_2I_2 (D=3.3, n=1.7)
- Shape discrim γ vs α

Test benches

1] Light absorbtion

LED pulses

2] WLS fibres

- 4 Kurarai types
 - 1 selected

- o Y11 (200)
- o O2(100)
- o O2(300)
- o R3(300)
- Readout with 2 fibres
 - → 10% improvement (dropped)

- \circ Active volume = 2.8 x 2.8 x 6 cm³ (~200 g of ZnWO₄)
- o Fibers spacing: 7 mm
- o 16 fibers read-out by SiPM
- o Possibility to repeat the study with the well known BGO
- Blue/Green LED injected in the middle (& UV LED with a quartz fiber ?)
- o Cosmic rays triggering

3] 16 fibre bench in preparation

- cosmics
 - → position dependance, Nph
- trigger by 2 timepix
 - → trajectory

20/22

Alternatives should be considered

With dSiPM there is no need for analogue signal post-processing

- SPAD array in CMOS technologies may offer the following benefits:
 - to embed complex functions in the same substrate (e.g. SPAD masking, counting, TDCs)
 - the design of the front-end electronics can be optimized to preserve signal integrity (especially useful for timing)
 - the monolithic structure simplifies the assembly for large area detectors
 - development costs can be kept relatively low if the design is based on standard process

See NSS MIC plenary

Conclusions

Missing:

- Forward Calorimetry
 - High Precision of the measurement (position)
 - Luminosity, Beam return
 - Linked to the placing of the magnets, etc
 - Activity mostly outside of FR, IT
- Muon Chambers [Paolo Giacomelli]
 - based on μ-RWell, RPC's
- PicoSec MicroMegas [Florian Brunbauer]

ILD:

Effort to evaluate the implications of continuous operation during the next months started

Calorimetrers

- very active domain
 - Many R&D, large span of "TRL"
 - Essentially split in IDEA (IT) + CALICE / ℓAr (FR)
- will be affected soon by ECFA DRR reshuffling
 - 1st meeting 12/01 at CERN [see call from R. Pöschl]
- Lively discussion on synergies:
 - SW (Key4HEP, to be completed),
 TDAQ (EUDAQ), beam test operations, ...
 - Common set of events for benchmarks (to be defined)