Summary / Prospects / Physics Case Electroweak, QCD, Heavy Flavour

Joint FCC France-Italy, Lyon — November, 2022

Gautier Hamel de Monchenault CEA-Saclay Irfu

Presentations at this workshop

This summary based on the following presentations

Overview of Theory Fulvio Piccinini (Pavia)

Overview of Software and Physics Patricia Azzi (Padova/CERN)

Overview of Detector Concepts Didier Contardo (IP2I Lyon)

November 2022

FCC France-Italy, Lyon

Forward-Backward Asymmetries Giovanni Guerrieri (Trieste)

$b \rightarrow st^+t^-$

Tristan Miralles (LPC Clermont)

$B_s \rightarrow D_s K$ benchmark with IDEA Giulio Mezzadri (Ferrara)

Prospect for tau measurements Alberto Lusiani (Pisa)

Top-beauty synergies @ FCC-ee Lars Röhrig (TU Dortmund, LPC Clermont)

Vector Boson Scattering at FCC-hh Isaac Ehel (LLR)

FCC: Future Circular ColliderS

100-km tunnel in Geneva area, 100-300 m underground, 8 sites

November 2022

see presentation by Frank Zimmermann

	√s	ℒ (cm ⁻² s ⁻¹)	first beams (technically)	tunnel
FCC-ee	90-365 GeV	200-1.5×10 ³⁴	2039	
FCC-eh	3.5 TeV	1.5×10 ³⁴	2043	100-km
FCC-hh	100 TeV	3×10 ³⁵	2043	

RF system: high-current \rightarrow high gradient

	V _{rf} [GV]	#bunches	I _{beam} [mA]
Ζ	0, I	16640	1390
WW	0,44	2000	147
ZH	2,0	393	29
top	10,9	48	5,4

FCC France-Italy, Lyon

3

Reminder: Physics at the Z-Pole

e⁺e⁻ colliders $\sqrt{s} = 91$ GeV

LEP-1 at CERN

- 1989-1992
- circular
- ALEPH, DELPHI, L3, OPAL
- 20 million Z's

27 km ∅

A fantastic legacy!

LEP1 legacy

- 91187.5 ± 2.1 MeV $M_Z =$
- 2495.2 ± 2.3 MeV $\Gamma_Z =$

$\sin^2\theta_{\rm eff} = 0.23153 \pm 0.00016$

- 0.1190 ± 0.0025 $\alpha_s =$
- 2.9840 ± 0.0082 $N_v =$

from Z line shape

from LR and FB asymmetries (tension "leptons" vs "quarks")

from multi-jets

from peak cross -section and ratio of partial widths $(2\sigma deficit)$

1.2-mile long

SLC at SLAC

- 1989-1998
- linear
- e⁻ beam polarisation
- SLD
- 550,000 Z's

A By-Product of FCC-ee Studies

November 2022

FCC France-Italy, Lyon

Including corrections due to the beam-beam effect, and updating theoretical calculation the Bhabha scattering crosssection, the long-standing LEP 2σ deficit is gone

from $N_{\nu} = 2.9840 \pm 0.0082$ arXiv:1908.01704 to $N_{\nu} = 2.9963 \pm 0.0074$ arXiv:1912.02067 • $\sigma_{\rm had}^0 = 41.4737 \pm 0.0326 \text{ nb}$ Y.Voutsinas at Moriond EW 2021 • $\Gamma_{\rm Z} = 2.4955 \pm 0.0023 \,\,{\rm GeV}$

• beam-beam bias: -0.1% ±0.034%

• beam-beam bias: -0.2% • **luminometer**: extremely accurate mechanical construction, at $\mathcal{O}(\text{few }\mu\text{m})$

FCC-ee: e⁺e⁻ Circular Collider

time [operation years]

With respect to LEP

- LEP dataset = a few minutes of FCC-ee
- 3 orders of magnitude in statistical uncertainties
- About a million times LEP for precision measurements
- Goal: limit the systematic uncertainties within a factor of 10 of the statistical

Key elements

- Knowledge of center-of-mass energy
 - 100 keV at the Z, 300 keV at the WW threshold
- Knowledge of the luminosity
- Control of acceptance and efficiency
 - Detector fiducial volume
 - Detector simulations
- Control of backgrounds
- Theory predictions (signal and backgrounds)
 - Monte-Carlo simulations

FCC France-Italy, Lyon

6

FCC-ee as electroweak and flavour factory

Data taking plan

Phase	Run duration (years)	Center-of-mass Energies (GeV)	Integrated Luminosity (ab ⁻¹)	
FCC-ee-Z	4	88–95	150	3
FCC-ee-W	2	158–162	12	
FCC-ee-H	3	240	5	
FCC-ee-tt	5	345-365	1.5	

Tera Z (> 3 × 10¹² Z decays, around Z pole)

- Z mass → precision EWK fit
- Z width \rightarrow EWK radiative corrections
- σ_{had}^0 , peak cross section \rightarrow invisible width, N_v
- $R_{\ell}^0 = \Gamma_{\text{had}} / \Gamma_{\ell} \rightarrow \text{lepton couplings, } \alpha_{\text{s}}(m_{\text{z}}^2)$
- $A_{\text{FB}}(\mu\mu) \rightarrow \text{lepton couplings, } \sin^2 \theta_W^{\text{eff}}, \alpha_{\text{OED}}(m_Z^2)$
- $A_{FB}(b, c), R_{b,c}^0 \rightarrow \text{quark couplings}$
- tau polarisation \rightarrow lepton coupling universality, $\sin^2 \theta_W^{\text{eff}}$

And also, Z pole = ultimate beauty, charm and tau factory Particle production (10^9) Belle II FCC-ee

and about 4.10° B_c mesons

300

300

80

80

600

150

7

Physics with > 3×10¹² Z Bosons

FCC-ee

EWPOs Goal: 20 to 100 better precision than LEP

> from FCC-ee Snowmass

• *Js* calibration by RDP

- △E/E ~ 𝒪(10⁻⁶)
- 100 (300) keV at Z-pole (WW)
- energy spread (~60 MeV) at 1% from scattering angle of µ pairs
- W+Si luminometer
 - small angle Bhabha scattering
 - absolute (relative) : 10⁻⁴ (5×10⁻⁵)

observable	present value	FCC-ee	from	main source of systematics
M7 (MeV)	91186 7 + 2 2	0.004 + 0.100		
Γ_{τ} (MoV)	$7/05.7 \pm 2.2$	0.001 ± 0.100 0.004 ± 0.025	Z line shape	beam energy
		0.004 ± 0.023		calibration
$\sin^2\theta_{eff}$ (×10 ⁶)	231530 ± 160	2 ± 2.4	A _{FB} μ,0	
A _{FB} ^{b,0} (×10 ⁴)	992 ± 16	$0.02 \pm 1-3$	b-quark asymmetry	b-jet charge
<i>R</i> ℓ (×10 ³)	20767 ± 25	$0.06 \pm 0.2-1$	hadrons to leptons	lantan accontance
a _s (×104)	1990 ± 25	$0.1 \pm 0.4 - 1.6$	Rℓ	lepton acceptance
1/α (×10³)	128952 ± 14	3 ± <1	A_{FB}^{μ} off-peak	
σ _{had} 0 (pb)	41541 ± 37	0.1 ± 4	pook cross soctions	luminosity
<i>N</i> _v (×10 ⁴)	29960 ± 82	0.05 ± 10	pear cross-sections	measurement

From **asymmetries** and partial width measurements, improvement by 1 to 2 orders of magnitude on Z vector and axial-vector couplings to leptons (e, μ and τ) and quarks (b and c)

- virtually infinite statistics \rightarrow 20 years to work on systematics!
- already huge jump in precision after 2 years, $> 10^{11}$ Z decays (= CEPC)

FCC-ee will require pushing **theory uncertainty** down by at least a factor of 10 on cross sections and even more on A_{FB} w.r.t LEP [FP]

The Electroweak Fit

p-value Prob(χ^{2}_{min} , 15) = 0.23

see presentation by Fulvio Piccinini

$$-\Delta
ho)M_{
m Z}^{2}(1-\sin^{2} heta_{
m eff})$$

 $\Delta
ho=f(M_{
m top}^{2},\ln M_{
m H})$ (of order 1%)

The Electroweak Fit

Successful experimental strategy

- precision at e⁺e⁻ machines
- discoveries at hadron machines

The Ultimate Electroweak Fit

FCC-ee CDR (2018)

The Electroweak Fit

Projection of the electroweak fit, showing M_W versus sin $2\theta_{eff}^{\ell}$

see presentation by Fulvio Piccinini

Left-Right Asymmetries

Effective vector and axial-vector couplings

$$g_{Vf} = \sqrt{\bar{\rho}} \left(T_f^3 - 2Q_f \sin^2 \theta_W^{\text{eff}} \right)$$
$$g_{Af} = \sqrt{\bar{\rho}} T_f^3$$
$$\sin^2 \theta_W^{\text{eff} f}$$

Asymmetry in left- and right-handed couplings

$$\mathcal{A}_f = \frac{L_f - R_f}{L_f + R_f} = 2 \frac{g_{\mathrm{V}f}/g_{\mathrm{A}f}}{1 + \left(\frac{g_{\mathrm{V}f}}{g_{\mathrm{A}f}}\right)^2}$$

Depends on vector to axial-vector ratios

- small for leptons
- large for down-type quarks
- sensitive to $sin^2\theta_W$

Left-right asymmetries can be measured at the Z pole with longitudinally polarised beams (i.e., at SLD, ILC)

November 2022

possibility of longitudinal beam polarisation in FCC-ee being studied (would reduce luminosity)

Forward-Backward Asymmetries

With unpolarised beams

FB Asymmetry

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto 1 + \cos^2\theta + \frac{3}{8}A_{\mathrm{FB}}\cos\theta$ at the Z pole: $A^{0\ f}_{ ext{FB}} = rac{3}{4} \mathcal{A}_e \, \mathcal{A}_f$

 $\int s$ dependance due to interference between the Z and the photon exchange

Tau polarisation

electrons and taus

$$P(\cos\theta) = \frac{\mathcal{A}_{\tau}(1 + \cos^2\theta) + 2\mathcal{A}_{e}\cos\theta}{(1 + \cos^2\theta) + 2\mathcal{A}_{e}\mathcal{A}_{\tau}\cos\theta}$$

asymmetry (= Z polarisation)

LEP among dominant systematics

- beam energy
- non-tau backgrounds

FCC-ee

- beam energy uncertainty negligible
- much control of tau backgrounds thanks to huge statistics of control samples
- goal: one order of magnitude reduction wrt to LEP → stat+sys: 0.0003

see presentation by Alberto Lusiani

Disentangle left-right asymmetries for

Forward/backward tau polarisation asymmetry provides a measurement of electron LR

$$P_{\tau}^{\rm FB} = -\frac{4}{3}\mathscr{A}_{\rm e}$$

 χ^{2} /DoF=4.7/7

Uncertainties on tau polarisation may limit coupling and LR asymmetries meas.

$A_{FB}(\mu)$ and QED coupling constant

P. Janot, JHEP 02 (2016) 053

one year of running at any given $\int s$

FCC France-Italy, Lyon

November 2022

 $1/a(M_z^2) = 128.952 \pm 0.014 (\rightarrow \delta a/a \approx 1.1 \times 10^{-4})$

• uncertainty dominated by hadronic vacuum polarisation (from low energy data) • currently *second* largest source of parametric error on $sin^2\theta_{eff}$ (first=theory)

- can be measured from the slope of the
 - FB µ asymmetry in the vicinity of the Z pole

$$A_{\rm FB}^{\ \mu}(s) \simeq A_{\rm FB}^{0\ \mu} \left[1 + \frac{s - M_Z^2}{2s} \frac{8\pi\sqrt{2}\,\alpha}{M_Z^2 G_{\rm F}(1 - 4\sin^2\theta_{\rm eff})^2} \right]$$

 $1/\alpha(M_Z^2)$ at the 4×10^{-5} level

from 40 fb⁻¹ at ± 3 GeV of Z pole

- param. error $< 1.2 \times 10^{-5}$ on $sin^2 \theta_{eff}$
- param. error < 0.6 MeV on $M_{\rm W}$

computation of missing EW higher-order corrections is still needed

Price to pay: sizeable part (one third ?) of the time off-peak

QCD studies at FCC-ee

Strong coupling constant

Very rich program of QCD measurements

Enormous multi-jet data sample

- phenomena, soft and collinear emissions
- Understanding of parton showers • higher-order logarithmic resummations hadronisation and nonperturbative
- phenomenological and/or analytic models

• etc.

FCC France-Italy, Lyon

November 2022

arXiv:2005.04545

3.5 x 10¹² hadronic Z decays!

 $\alpha_s(m_Z^2)$ with uncertainty 0.00015 from event shape observables (current accuracy: ±0.85%)

Also:

- tau decays (current unc.: 1.6%)
- jet production rates and event shapes

Factors up to 10 improvements with respect to the current state-of-the-art in the theoretical uncertainties of the calculations of the partial and total widths of the W and Z bosons will be needed (higher-order QCD and mixed QCD+EWK calculations)

> QCD: main source of uncertainty in FB asymmetry of b quarks (2.4 σ)

AFB(b)

- QCD corrections are a dominant source of correlated systematics between measurements
- QCD corrections and associated uncertainties can be reduced significantly thanks to acolinearity cuts
- much improved b/c jet tagging
- huge samples to control gluon splitting
- use of exclusive B decay samples

Source	$R_{\rm b}^0$	$R_{\rm c}^0$	$A^{0, b}_{FB}$	$A^{0, c}_{\text{FD}}$	$A_{\rm h}$	
		0	гБ	FB	V LD	
	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-2}]$	[
statistics	0.44	2.4	1.5	3.0	1.5	
internal systematics	0.28	1.2	0.6	1.4	1.2	
QCD effects	0.18	0	0.4	0.1	0.3	
$B(D \rightarrow neut.)$	0.14	0.3	0	0	0	
D decay multiplicity	0.13	0.6	0	0.2	0	
B decay multiplicity	0.11	0.1	0	0.2	0	
$B(\mathrm{D}^+ \to \mathrm{K}^- \pi^+ \pi^+)$	0.09	0.2	0	0.1	0	
$B(D_s \to \phi \pi^+)$	0.02	0.5	0	0.1	0	
$B(\Lambda_{\rm c} \rightarrow {\rm p~K^-}\pi^+)$	0.05	0.5	0	0.1	0	
D lifetimes	0.07	0.6	0	0.2	0	
B decays	0	0	0.1	0.4	0	
decay models	0	0.1	0.1	0.5	0.1	
non incl. mixing	0	0.1	0.1	0.4	0	
gluon splitting	0.23	0.9	0.1	0.2	0.1	
c fragmentation	0.11	0.3	0.1	0.1	0.1	
light quarks	0.07	0.1	0	0	0	
beam polarisation	0	0	0	0	0.5	
total correlated	0.42	1.5	0.4	0.9	0.6	
total error	0.66	3.0	1.6	3.5	2.0	
	statisticsinternal systematicsQCD effects $B(D \rightarrow neut.)$ D decay multiplicityB decay multiplicity $B(D^+ \rightarrow K^- \pi^+ \pi^+)$ $B(D_s \rightarrow \phi \pi^+)$ $B(\Lambda_c \rightarrow p K^- \pi^+)$ D lifetimesB decaysdecay modelsnon incl. mixinggluon splittingc fragmentationlight quarksbeam polarisationtotal correlated	statistics0.44internal systematics0.28QCD effects0.18 $B(D \rightarrow neut.)$ 0.14D decay multiplicity0.13B decay multiplicity0.11 $B(D^+ \rightarrow K^- \pi^+ \pi^+)$ 0.09 $B(D_s \rightarrow \phi \pi^+)$ 0.02 $B(\Lambda_c \rightarrow p K^- \pi^+)$ 0.05D lifetimes0.07B decays0decay models0non incl. mixing0gluon splitting0.23c fragmentation0.11light quarks0.07beam polarisation0total correlated0.42total error0.66	Image: statistics 0.44 2.4 internal systematics 0.28 1.2 QCD effects 0.18 0 B(D \rightarrow neut.) 0.14 0.3 D decay multiplicity 0.13 0.6 B decay multiplicity 0.11 0.1 $B(D^+ \rightarrow K^- \pi^+ \pi^+)$ 0.09 0.2 $B(D_s^- \rightarrow \phi \pi^+)$ 0.02 0.5 $B(\Lambda_c \rightarrow p K^- \pi^+)$ 0.05 0.5 D lifetimes 0.07 0.6 B decays 0 0 decay models 0 0.1 non incl. mixing 0 0.1 gluon splitting 0.23 0.9 c fragmentation 0.11 0.3 light quarks 0.07 0.1 beam polarisation 0 0 total correlated 0.42 1.5 total error 0.666 3.0	statistics 0.44 2.4 1.5 internal systematics 0.28 1.2 0.6 QCD effects 0.18 0 0.4 $B(D \rightarrow neut.)$ 0.14 0.3 0 D decay multiplicity 0.13 0.6 0 B decay multiplicity 0.11 0.1 0 $B(D^+ \rightarrow K^- \pi^+ \pi^+)$ 0.09 0.2 0 $B(D_s \rightarrow \phi \pi^+)$ 0.02 0.5 0 $B(\Lambda_c \rightarrow p K^- \pi^+)$ 0.05 0.5 0 D lifetimes 0.07 0.6 0 B decays 0 0.1 0.1 non incl. mixing 0 0.1 0.1 gluon splitting 0.23 0.9 0.1 c fragmentation 0.11 0.3 0.1 light quarks 0.07 0.1 0 beam polarisation 0 0 0.4 total correlated 0.42 1.5 0.4	statistics 0.44 2.4 1.5 3.0 internal systematics 0.28 1.2 0.6 1.4 QCD effects 0.18 0 0.4 0.1 $B(D \rightarrow neut.)$ 0.14 0.3 0 0 D decay multiplicity 0.13 0.6 0 0.2 B decay multiplicity 0.11 0.1 0 0.2 $B(D^+ \rightarrow K^- \pi^+ \pi^+)$ 0.09 0.2 0 0.1 $B(D_s \rightarrow \phi \pi^+)$ 0.02 0.5 0 0.1 $B(\Lambda_c \rightarrow p K^- \pi^+)$ 0.05 0.5 0 0.1 D lifetimes 0.07 0.6 0 0.2 B decays 0 0.1 0.4 0.4 decay models 0 0.1 0.1 0.5 non incl. mixing 0 0.1 0.1 0.4 gluon splitting 0.23 0.9 0.1 0.2 c fragmentation 0.11 0.3 0.1 0.1 light quarks 0.07 0.1 0 0 beam polarisation 0 0 0 0 total correlated 0.42 1.5 0.4 0.9	statistics 0.44 2.4 1.5 3.0 1.5 internal systematics 0.28 1.2 0.6 1.4 1.2 QCD effects 0.18 0 0.4 0.1 0.3 $B(D \rightarrow neut.)$ 0.14 0.3 0 0 D decay multiplicity 0.13 0.6 0 0.2 B decay multiplicity 0.11 0.1 0 0.2 $B(D^+ \rightarrow K^- \pi^+ \pi^+)$ 0.09 0.2 0 0.1 $B(D_s \rightarrow \phi \pi^+)$ 0.02 0.5 0 0.1 $B(\Lambda_c \rightarrow p K^- \pi^+)$ 0.05 0.5 0 0.1 D lifetimes 0.07 0.6 0 0.2 B decays 0 0.1 0.1 0.4 0 0.1 0.1 0.4 0 $gluon splitting$ 0.23 0.9 0.1 0.1 0.11 0.3 0.1 0.1 0.1 0.11 0.3 0.1 0.1 0.1 0.11 0.3 0.1 0.4 0 0.11 0.3 0.1 0.1 0.1 0.11 0.3 0.1 0.1 0.1 0.11 0.3 0.1 0.1 0.1 0.11 0.3 0.1 0.1 0.1 0.11 0.22 0.1 0.1 0.1 0.22 0.11 0.1 0.1 0.1 0.31 0.11 0.3 0.1 0.1 0.4 0.07 0.1

arXiv:2010.08604

Forward-backward asymmetries at FCC-ee

Difficulty: quark-antiquark discrimination \rightarrow two approches are extensively studied

Jet charge study

Soft lepton study

In both cases, stat uncertainty:

- 1.4 fb⁻¹: ±0.1%
- 150 fb⁻¹: ±0.01%

Expected dominant systematics modelling of b fragmentation (~5%) • FS QCD radiation effects B-hadron decay modelling • b-tagging efficiency

 $A_{FB}^{0,b} = 0.09410 \pm 0.00001 (\text{stat}) \pm 0.00450 (\text{syst})$

see presentation by Giovanni Guerrieri

Very promising

- analysis workflows in place
- unfolding machinery in place

Next steps

- reproduce LEP results
- improve systematics

Measurement at the Z pole: R_b

Novel b-hadron double tagging technique for R_b determination

Tree-level contribution.

Zbb-vertex correction, contribution ≈ 1 %.

New hemisphere tagging

- select hemisphere with exclusive B-hadron tag
- purity close to 100%
- efficiency of order 1%
- \rightarrow statistical unc. of order 5 10⁻⁵ (=LEPx20)
- hemisphere correlation unc. much reduced

LEP measurement dominated by

- udsc background
- MC statistics

Next steps

- estimate purity of exclusive hemisphere tagging
- check than 1% efficiency is possible
- fully charged B decays
- decays with K_S^0 or π^0 in the FS
- \rightarrow requirements on tracking and calorimetry
- similar work to be developed for A_{FB}^b

synergy with previous talk!

WW threshold and above

W mass: very hot topic!

Above threshold

• 1000 times LEP-2 statistics

 V_{cb} from WW (10⁸ WW pairs) • W \rightarrow sc ~ W \rightarrow du 127M • W \rightarrow su ~ W \rightarrow dc 6.8M • W → bu 1.7k

- W \rightarrow bc 250k

FCC France-Italy, Lyon

FCC-ee target

- $\Delta M_{\rm W} = 0.4 \ (0.25 \oplus 0.3) \ {\rm MeV}$
- △Γ_W = 1.5 (1.2⊕0.3) MeV

Current precision on V_{cb}: 1.5%

FCC-ee

Study in progress, hope to reach better than 0.5%

CKM measurements

Unitarity Triangle

At the end of HL-LHC, γ will be known with about 1 deg uncertainty

FCC-ee can improve this uncertainty by a factor of 2, with decays such as $B \rightarrow DK$

FCC France-Italy, Lyon

see presentation by Giulio Mezzadri

 $B \rightarrow DK$ arXiv:2107.05311

The "flat" triangle UT_{sb}

Mixing-induced CP violation in time-dependent $B_s \rightarrow D_s K$

 $B_s \rightarrow \phi \phi$ arXiv:2205.07823

November 2022

All the angles of the "flat" unitarity triangle UT_{sb} can be determined directly with high accuracy

- $B_s \rightarrow D_s K$ π – (α_s–β_s)
- $B_s \rightarrow J/\Phi \psi$ $\pi + 2\beta_s$
- $B_u \rightarrow D^0 K$ $\pi + \gamma_s$

R. Aleksan et al. $B_s \rightarrow D_s K$ arXiv:2107.02002

The guiding light analysis...

Fast simulation of $B_s \rightarrow D_s K$ benchmark

 $Ds \rightarrow \Phi\pi + bachelor K$, with $\Phi \rightarrow KK$

First fast IDEA simulation of this mode (DELPHES)

- tools tested and ready for more complex analyses
- a new version of the vertexing code now available

Study in a preliminary stage

- good reconstruction of B_s candidate mass, vertexing with covariance matrix
- systematic studies with truth matching
- first look at PID (cluster counting)
- first study of combinatorial from some of the main B_s backgrounds B^o mass with vertexing

November 201 de distinguish from $B_s \rightarrow D_s m_R R_s - D_s m_R R_s$

see presentation by Giulio Mezzadri

next steps

- reproduce results of guiding analysis
- final states with neutrals

Flavour anomalies

Over the years LHCb has reported or confirmed intriguing flavour anomalies, some of which hint at deviations from Lepton Flavour Universality (LFU)

November 2022

LFU in the SM: universal electroweak gauge interactions to e, μ and τ leptons

 $\ln b \rightarrow c\ell v$ transitions • tests of LFU involving τ/μ ratios $R(D^{(*)})$: $B \rightarrow D^{(*)}\tau v / B \rightarrow D^{(*)}\mu v$

LHCb has presented several new results based on their full Run-2 dataset

Study of B_s to K^{*}ττ at FCC-ee

Importance of final states with tau leptons

- B \rightarrow K* τ + τ -,
- V_{cb} from $B_{c}^{+} \rightarrow \tau^{+}v$

ΡV SV В π

Reconstruction method fully validated with simulated signal events

Extensive study of backgrounds

$B^{0} \rightarrow K^{*0} \tau \tau (\tau \rightarrow \pi \pi \pi \nu)$
$B^{0} \rightarrow K^{*0}D_{s}D_{s}(D_{s} \rightarrow \tau \nu)$
$B^{0} \rightarrow K^{*0}D_s D_s (D_s \rightarrow \pi\pi\pi\pi^{0})$
$B^{0} \rightarrow K^{*0}D_s D_s (D_s \rightarrow \pi\pi\pi\pi^{0}, \tau\nu)$
$B^{0} \rightarrow K^{*0} D_s D_s (D_s \rightarrow \pi \pi \pi \pi^{0} \pi^{0})$
$B^{0} \rightarrow K^{*0} D_{s} \tau \nu (D_{s} \rightarrow \tau \nu)$
$B^{0} \rightarrow K^{*0}D_{s}^{*}D_{s}(D_{s}^{*} \rightarrow D_{s}\gamma, D_{s} \rightarrow \tau \nu)$

 $D_s \rightarrow 3\pi 2\pi^0 = \text{overwhelming}$ • need to identify π^0 from η/ω

- $D_s \rightarrow \tau \pi$
- can be reduced with a 2D cut in the plane of p_{τ} cuts

see presentation by Tristan Miralles

Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upgr. $(50/fb)$	FCC-ee
W/H penguins				
$B^0 \to K^*(892)e^+e^-$	~ 2000	~ 150	~ 5000	~ 200000
$B(B^0 \to K^*(892)\tau^+\tau^-)$	~ 10	—		~ 1000
$B_s \to \mu^+ \mu^-$	n/a	~ 15	~ 500	~ 800
$B^0 \to \mu^+ \mu^-$	~ 5	_	~ 50	~ 100
$\mathcal{B}(B_s \to \tau^+ \tau^-)$				
eptonic decays				
$B^+ \to \mu^+ \nu_{mu}$	5%	_	_	3%
$B^+ \to \tau^+ \nu_{tau}$	7%	_	—	2%
$B_c^+ \to \tau^+ \nu_{tau}$	n/a	—	—	5%
CP / hadronic decays				
$B^0 \to J/\Psi K_S \; (\sigma_{\sin(2\phi_d)})$	$\sim 2. * 10^6 \ (0.008)$	41500(0.04)	$\sim 0.8 \cdot 10^6 \ (0.01)$	$\sim 35 \cdot 10^6 \ (0.000)$
$B_s \to D_s^\pm K^\mp$	n/a	6000	~ 200000	$\sim 30\cdot 10^6$
$B_s(B^0) \to J/\Psi \phi \ (\sigma_{\phi_s} \text{ rad})$	n/a	96000(0.049)	$\sim 2.10^6 \ (0.008)$	$16 \cdot 10^6 \ (0.003)$

150 billion $\tau+\tau-$ pairs at the Z pole (=3 times Belle-2), with a boost of 25

tau polarisation

- τ and e chiral coupling asymmetries
- decays
 - $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$
 - $\tau \rightarrow hv$, $h = \pi$, K (1-prong)
 - $\tau \rightarrow \pi \pi^0 v$
 - 3-prong, 5-prong...
- for each mode: kin. variables with various sensitivities to polarisation
 - clean separation between modes required
 - π^0 measurements essential

Mass

- pseudo-mass method
- current: 10⁻⁴ relative (Belle)
- 3-prong decays
 - momentum of 3-prong system and beam energy
- control sample: $Z \rightarrow J/\psi X$

Estimate of V_{us} and first row unitarity test

- $\tau \rightarrow X_s v$
- $\tau \rightarrow K$
- $\tau \rightarrow K / \tau \rightarrow \pi$

Tau spectral functions

- more favourable at Z peak
- rare decay modes
- complex analyses, need manpower and MC

Lifetime

- statistical uncertainty at 10⁻⁵ level
- flight distance 2.2 mm
- strong requirements on VDet construction and alignement
- target impact parameter resolution 3 µm (factor of 5 wrt LEP)
 - enormous control samples

Search for LFV decays

LFV searches vigorously pursued

- muon LFV more powerful
- tau LFV has more channels
 - discrimination of NP models
 - more powerful for specific models

HL-LHC can do well for $\tau \rightarrow 3\mu$

Search for LFV decays

FCC-ee

- no extensive simulation studies yet
- existing MC simulation technology seems sufficient [AL]

[1] M. Dam, 2% of FCC stat [2] M. Dam, with long-segmented xtal ECAL

$\tau \rightarrow \mu \gamma$ improves with

- EM energy res. and granularity
- muon ID

- $\tau \rightarrow \mu \gamma$ improves with
- tracking & vertexing
- muon ID

Estimates

- from extrapolations, with reasonable hypotheses
- with (improbable) background free assumption

[1] Alberto's guestimate [2] M. Dam, TAU2021

Bottom line

• FCC-ee/CEPC competitive with Belle-2 and future TCF

Lepton flavour universality test

 $B'(\tau \rightarrow evv) = average of \begin{array}{l} B(\tau \rightarrow evv) \\ B(\tau \rightarrow vv).f_{\tau e}/f_{\tau \mu} \end{array}$

m_T

TT

- systematic from pseudo-mass modelling
- improve using 5-prong decays?

FCC-ee

- limiting systematic: length scale of VDet $B(\tau \rightarrow \ell v v)$
- guestimate from ALEPH extrapolation

Expect huge improvement on this powerful LFU test

FCC-ee detector requirements

		Track mom. reso	Impact Par reso	PID	ECAL reso	ECAL granularity	HadronicMassRes. PFlow	lep/pi separ.	Comments		
											-
r .	mH from recoil mass, Z(mumu)H	+									-
	tau -> 3 mu	+ (collimated tracks)									-
	B-field monitoring from JPSI, DUS	+ (low momenta)									-
	BU, BS to mumu	+						+			-
											resentatio
	Z(II)H(qq) IOF HDD, HCC, Hgg		+ + /high purity \\/D))			+				
	VCD from vv decays		+ (nign punty vvP	}							I & D. Con
	EVV HF ODSERVADIES (KD, KC, AFB)		+								
			++ (soft tracks)	+		+ (più in jets)			also efficiency for low p tra		-
			+						systematics to be underst	ood	-
	gamma from Bs->Ds K	+	+	+	++						-
	Z(II)H(ss) (BSM)		+	+			+				_
\rightarrow	Vcs from W decays		+	+ (high purity WP)					-		-
	D = -10-10										
					+	+					-
	B->pi0pi0 w/ Dalitz		+			+					-
	Tau polarization (Z to tautau)			+	+	+	+(tau reco)				-
	ve coupling Z->vvgamma				+						-
	tau->mugamma				+	+(spatial)			-		-
	ALPS, ee->agamma				+	+(spatial)					
	sigma(ZH) from recoil avec Z->qq						+		also testing Pflow algo		_
	Higgs width: ee->vvH, H->bb		+				+		also testing Pflow algo		
	bb,cc,gg coupling ZH-> qqqq		+				++(association)		testing association/jet clus	stering	
	m(top) direct in ee->tt->qqbqqb,lvbqqb	+	+		+		++(association)		testing association/kinema	atic fit	
	Higgs Width ZH->qqqqqq		+				++(association)		testing association/kinema	atic fit	
\rightarrow	m(W) direct reconstruction	+			+		++		kinematic fit		
\rightarrow	AFB(bb,cc)		+				+(jet charge)				
	H->inv						+				
	Total x-section at the Z								inclusive. calo selection, E	ECAL & HCAL resolutions]
	LLP, very displaced objects								granularity of ECAL, HCAL	timing, Muons]
	electron Yukawa. H->aa (at the pole)						++		gg/gg separation		1

Many specific challenges for Z pole data taking

- over 100 kHz event rate: storage and processing!
- extreme constraints on luminometer mechanical accuracy and alignement
- extreme control on acceptance of central tracking and calorimetry

see presentation by Patricia Azzi see presentation by Didier Contardo

Also

- b, c jet-tagging, b-flavour tagging
- K/ π separation over wide range
- π^0 ($\Delta E/E < 5\%/\sqrt{E}$), K_S⁰ reconstruction

Unitarity and the Higgs Boson

In the SM, the Higgs boson "unitarises" the longitudinal W scattering amplitudes

Gauge

Elucidation of the EWSB sector

• probe SM in regime where the EW symmetry is restored ($\sqrt{s} \gg v=246$ GeV) by studying longitudinal gauge boson scattering in the I-5 TeV energy range

Higgs

With the Higgs: **exact** cancellation of the unitarityviolating E^2 dependance of the scattering

cross section at high energy

Crucial closure test of the SM

- either the Higgs regularises the theory fully
- or New Physics shows up a the TeV scale
 - anomalous TGCs and QGCs
 - new Higgs or gauge particles

FCC-hh

Scattering of longitudinal vector bosons (VBS)

- sensitive to the relation between gauge couplings and the VVH coupling
- large QCD and EWK backgrounds
- two jets at large backward and forward rapidities
- azimuthal correlations between the two leptons

A precise measurement necessitates leptons down to $|\eta| = 4$ and jets down to $|\eta| = 6$ in conditions of 1000 pile-up events!

Measurements of longitudinal-VBS processes are essential to

studying the BEH-Mechanism, and a prime place to determine precise Higgs couplings at high energies

Longitudinally-polarised ZZ scattering

Feasibility study

Using MadGraph5_aMC@NLO

Unpolarised cross sections $pp \rightarrow VVqq \rightarrow 4lqq$

fb	14 TeV	27 TeV	ratio	100 TeV	ratio
W+W+ + W-W-	39.9	127.0	3.2	818.0	20.5
W⁺Z + W⁻Z	8.1	26.6	3.2	177.6	22.5
ZZ	0.7	2.2	3.4	15.6	24.0

Polarised cross sections $pp \rightarrow VVaa \rightarrow 4laa$

fb	14 TeV	27 TeV	ratio	100 TeV	ratio
W+W+ + W-W-	1.3	4.2	3.0	19.4	14.9
W⁺Z + W⁻Z	0.4	1.4	3.2	8.7	22.5
ZZ	0.04	0.13	3.4	0.86	22.6

Longitudinally polarised VBS cross sections: consistent gain of 3 (20) across all channels for 27 (100) TeV center of mass energy.

FCC France-Italy, Lyon

34

Longitudinally-polarised ZZ scattering

Feasibility study

Using Delphes simulation

November 2022

Backgrounds: QCD-induced processes **Optimisation**: 2 TeV cut on dijet mass and 3 on jet rapidity separation

Very promising study that demonstrates possibility of

- separation of VBS and QCD events
- separation of polarisation states in ZZ scattering

En guise de conclusion

• within LHC reach but elusive? • beyond LHC energy reach?

...there is no experiment/facility, proposed or conceivable (...) which can guarantee discoveries beyond the SM, and answers to the big questions of the field

M. Mangano

FCC programme after HL-LHC

FCC-ee is

- the **unique opportunity** to study with the highest possible precision the four most massive elementary particles, W, Z, H and t, four pillars of the SM which are at the **heart of the** electroweak symmetry breaking mechanism
- a necessary and indispensable step towards the highest energies in proton-proton collisions: FCC-hh

Vector boson scattering

> Suppressed decays

> > Sensitivity

Thank you to the EWK/flavour speakers in physics parallel sessions

- great talks!
- all errors in this summary talk are mine

Thank you to the organisers and all the participants for this nice workshop!

Future e⁺e⁻ Colliders: Pros & Cons

	Circular Collie	ders (FCC-ee)	Linear Colliders (ILC)		
	pros	cons	pros	cons	
√s		 limited by synchrotron radiation (SR), which increases as E⁴_{beam}/R 100 km → 365 GeV max 	 extendable in energy large potential √s reach 250→500→1000 GeV (access to ttH, ZHH, Hee) 	 running at √s smaller than 250 GeV would require optimisation 	
beam- strahlung		 strong: affects beam lifetime (typically 30 min.) top-up injection needed to compensate for fast <i>L</i> burn-off 		 strong due to beam size at interaction point (IP) increasing with energy 	
energy spread	 small energy spread (<0.1% at 240 GeV) with top-up injection: mean <i>L</i> = 95% of peak 			 larger energy spread (86% within 1% of nominal at 250 GeV) 	
lumi	 high-lumi obtained with large number of bunches increasing at lower √s due to less SR (spare RF used to accelerate more bunches) crab waist scheme several interaction regions possible 	 limited by SR power at higher energies 	 high-lumi obtained with nanometer-size beams increasing naturally with energy thanks to beam dynamics at IP luminosity upgrade (1312 → 2625 bunches) 	 low repetition rate only one interaction region (ILD and SLD detectors in push-pull) 	
L-polar		 no L-polarisation, except perhaps at Z peak 	 e⁻ beam: ±80% e⁺ beam: ±30% (±60%) 		
misc	 precise E_{beam} from resonant depolarisation (Z peak and WW threshold) 		 nm-beams at IP allow for very small beam pipe (superior for b/c tagging) 		

Detector Concepts

FCC-ee detector concepts

- CLD: inspired from CLIC detector
- IDEA: from present state-of-the-art

- PID with compact RICH/SiPMs?
- CALICE-like calo (W/Si, W/scint+SiPMs)
- coil outside calorimeters

excellent momentum resolution

Luminosity \rightarrow B field limited to 2T

high hermiticity

November 2022

2 or 4 IPs?

other concepts under study, e.g.

Muon Tagge

Noble Liquid ECAL

HCAL Barrel

ECAL Barrel

Drift Chamber

- PID exploiting cluster counting
- timing layer + crystals + dual readout?
- coil between ECAL and HCAL?

- Vertex detector + drift chamber
- PID with TOF
- Fined-grained LAr/Pb
- coil inside calorimeters

dedicated PID?

EM energy resolution?

high granularity

high separation power

M_w: Parametric Errors

Experimental

 $M_{\rm W} = 80.385 \pm 0.015 \,\,{\rm GeV}$

Electroweak Fit

 $M_{\rm W} = 80.3584 \; {\rm GeV}$ $\pm (\delta M_{\rm W})_{\rm th}$ $\pm (\delta M_{\rm W})_{\rm top}$ $\pm (\delta M_{\rm W})_{\rm H}$ $(\delta M_{\rm H}/0.24 \text{ GeV}) \times 0.1 \text{ MeV}$ $\pm (\delta M_{\rm W})_{\rm Z}$ $(\delta M_{\rm Z}/2.1 \text{ MeV}) \times 2.5 \text{ MeV}$ $\pm (\delta M_{\rm W})_{\alpha}$ $\pm (\delta M_{\rm W})_{\alpha_{\rm s}}$

sin²θ_{eff}: Parametric Errors

Experimental

$$\sin^2 \theta_{\rm eff}^{\,\ell} = 0.23153 \pm 0.00016$$

Electroweak Fit

$$\sin^{2} \theta_{\text{eff}}^{\ell} = 0.231488 \\
\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{th}} \\
\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{top}} \quad (\delta M_{\text{top}} \\
\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{H}} \quad (\delta M_{\text{H}} \\
\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{Z}} \quad (\delta M_{\text{H}} \\
\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\alpha} \\
\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\alpha} \\$$

November 2022

FCC France-Italy, Lyon

 $\pm 7.0 \times 10^{-5}$

- 4.7×10^{-5}
- $(0.76 \text{ GeV}) \times 2.9 \times 10^{-5}$
- $(0.24 \text{ GeV}) \times 0.1 \times 10^{-5}$
- $I_{\rm Z}/2.1 \,\,{\rm MeV}) \times 1.5 \times 10^{-5}$
 - $(\delta \alpha / 10^{-4}) \times 3.5 \times 10^{-5}$
- $(\delta \alpha_{\rm s}/3 \times 10^{-3}) \times 1.0 \times 10^{-5}$

Main parametric errors:

- theory
- a
- top mass
- Z mass
- as

•

• Higgs mass

Cross Sections in e⁺e⁻

	At Z pole	
• $e^+e^- \rightarrow Z$	30 nb	
At	WW thresho	d
• $e^+e^- \rightarrow W^+W^-$	0-12 pb	
A	t √s = 250 Ge	\checkmark
• $e^+e^- \rightarrow ZH$	200 fb	(Higsstrahlung)
• $e^+e^- \rightarrow Hvv$	8 fb	(W fusion)
Cross sections decr	reasing as 1/s:	
• $e^+e^- \rightarrow qq(\gamma)$	60 pb	(incl. Z return)
• $e^+e^- \rightarrow W^+W^-$	16 pb	
• $e^+e^- \rightarrow ZZ$	1 pb	
Slowly increasing cr	oss sections:	
• $\gamma\gamma \rightarrow qq, \ell\ell$	30 pb	(m > 30 GeV)
• $e\gamma \rightarrow Ze$	3.8 pb	
• $e\gamma \rightarrow Wv$	1.5 pb	(WWY)
• ee \rightarrow Zvv	32 fb	(WWZ)
A	t √s = 380 Ge ^v	\checkmark
• $e^+e^- \rightarrow tt$	500 fb	
• $e^+e^- \rightarrow ZH$	100 fb	
• $e^+e^- \rightarrow Hvv$	40 fb	

Physics at e⁺e⁻ Colliders

√s	Processes	Physics Goals	Observables
91 GeV	• e+e- → Z	ultra-precision EW physics	sin²θ _{eff} Mz, Γz, Nv α, αs
125 GeV	• e ⁺ e ⁻ → H	limit on s-channel H production?	Уe
I60 GeV	• $e^+e^- \rightarrow W^+W^-$	ultra-precision W mass	Μ _W , Γ _W
>160 GeV	• $e^+e^- \rightarrow W^+W^-$ • $e^+e^- \rightarrow qq$, $\ell\ell$ (γ)	precision W mass and couplings precision EW (incl. Z return)	<i>M</i> w, aTGC <i>N</i> v
250 GeV	• e⁺e⁻ → ZH	ultra-precision Higgs mass precision Higgs couplings	<i>М</i> н к∨, к _f , Гн
360 GeV	• $e^+e^- \rightarrow tt$	ultra-precision top mass	<i>M</i> _{top}
>360 GeV	• $e^+e^- \rightarrow tt$ • $e^+e^- \rightarrow ZH$ • $e^+e^- \rightarrow Hvv$	precision top couplings precision Higgs couplings	
500+ GeV	• $e^+e^- \rightarrow ttH$ • $e^+e^- \rightarrow ZHH$ • $e^+e^- \rightarrow Z' \rightarrow ff$ • $e^+e^- \rightarrow \chi\chi$ • $e^+e^- \rightarrow \chi\chi$	Higgs coupling to top Higgs self-coupling search for heavy Z' bosons search for supersymmetry (SUSY) search for new Higgs bosons	Уtop λннн

