

Summary & Prospects Software / Higgs / Top

Physics and Experiments session

14:00	Simulation of IDEA	Lorenzo Capriotti
	Amphithéatre Dirac	14:00 - 14:15
	Particle Flow for Dual Read-Out Calorimeter	Adelina D'Onofrio
	Amphithéatre Dirac	14:20 - 14:35
	Prospects for tau measurements	Alberto Lusiani
	Amphithéatre Dirac	14:40 - 14:55
15:00	Bs> DsK	Giulio Mezzadri et al.
	Amphithéatre Dirac	15:00 - 15:15
	b to s tau tau	Tristan Miralles
	Amphithéatre Dirac	15:15 - 15:30
16:00	Higgs cross section and mass with ZH processes	Ang LI et al.
	Amphithéatre Dirac	16:00 - 16:15
	Higgs Hadronic decays	Reham AliMohamed Mahmoud
	Amphithéatre Dirac	16:20 - 16:35
	Higgs couplings to heavy flavor	Giovanni Marchiori
	Amphithéatre Dirac	16:40 - 16:55
17:00	Higgs Self coupling	Luis Porteles et al.
	Amphithéatre Dirac	17:00 - 17:15
	Discussion: Synergies in Higgs Physics	
	Amphithéatre Dirac	17:20 - 17:30

18:00	Forward-Backward Asymmetries	Giovanni Guerrieri
	Room 3	18:00 - 18:15
	Vector Boson Scattering at FCC-ee	Claude Charlot. et al.
	Room 3	18:20 - 18:35
	Top FCNC	Hamzeh Khanpour
	Room 3	18:40 - 18:55
19:00	Top-Beauty coupling	Lars Roherig
	Room 3	19:00 - 19:15

Physics and Experiments session Cover in this summary

Simulation

14:00	Simulation of IDEA Amphithéatre Dirac	Lorenzo Capriotti 14:00 - 14:15
	Particle Flow for Dual Read-Out Calorimeter Amphithéatre Dirac	Adelina D'Onofrio 14:20 - 14:35
	Prospects for tau measurements Amphithéatre Dirac	<i>Alberto Lusiani</i> 14:40 - 14:55
15:00	Bs> DsK Amphithéatre Dirac b to s tau tau Amphithéatre Dirac	<i>Giulio Mezzadri et al.</i> 15:00 - 15:15 <i>Tristan Miralles</i> 15:15 - 15:30
16:00	Higgs cross section and mass with ZH processes Amphithéatre Dirac	<i>Ang LI et al.</i> 16:00 - 16:15
	Higgs Hadronic decays Amphithéatre Dirac	Reham AliMohamed Mahmoud 16:20 - 16:35
	Higgs couplings to heavy flavor Amphithéatre Dirac	Giovanni Marchiori 16:40 - 16:55
17:00	Higgs Self coupling Amphithéatre Dirac	Luis Porteles et al. 17:00 - 17:15
	Discussion: Synergies in Higgs Physics	

L8:00	Forward-Backward Asymmetries		Giovanni Guerrieri
	Room 3		18:00 - 18:15
	Vector Boson Scattering at FCC-ee		Claude Charlot. et al.
	Room 3		18:20 - 18:35
	Top FCNC		Hamzeh Khanpour
	Room 3		18:40 - 18:55
L9:00	Top-Beauty coupling		Lars Roherig
	Room 3		19:00 - 19:15
		Ton	

Physics cases

Detector concepts

Establish the detector requirements for optimising measurement of target physics cases, in particular matching experimental systematics with the expected statistical precision.

Physics cases

To reach the goal

Synergies with detector experts

Detector concepts

Establish the detector requirements for optimising measurement of target **physics cases**, in particular matching experimental systematics with the expected statistical precision.

<u>Simulations</u> of detector setup (fast sim or full sim as appropriate)

Higgs boson precision measurements!

 m_H

 Γ_{H}

8_{HXX}

ΗH

The FCCee "Higgs" factory

Diverse "Higgs" dataset every few years

Phase	Run duration [years]	Centre-of-mass energies [GeV]	Int. lumi. [ab ⁻¹]
ZH maximum	3	240	5
tt threshold	5	345-365	1.5
s-channel	3?	125	?

The measurements strategy

Measure the total ZH production cross section

The cornerstone of the Higgs physics programme, made a selection independent of H detailed properties by counting events with a Z and using the recoiling mass method

 $\sigma_{HZ} \propto g_{HZZ}^2$

Ultimate statistical precision for σ_{ZH} is 0.1% considering ZH selection 100% efficient and pure

The measurements strategy

Measure the total ZH production cross section

The cornerstone of the Higgs physics programme, made a selection independent of H detailed properties by counting events with a Z and using the recoiling mass method

 $\sigma_{HZ} \propto g_{HZZ}^2$

Ultimate statistical precision for σ_{7H} is 0.1% considering ZH selection 100% efficient and pure

Higgs mass and ZH cross-section from $Z(\mu^+\mu^-)H$ events

Ang LI, Gregorio Bernardi (APC-Paris, Université de Paris, CNRS/IN2P3)

Ang LI, Gregorio Bernardi

Measurement of hadronic Higgs boson branching ratios at FCC-ee with ZH events at √s=240 GeV

Giovanni Marchiori (APC Paris) Work down with Alexis Maloizel and Paul Guimbard (ENS Paris-Saclay)

Estimate sensitivity to hadronic branching ratios of Higgs boson (g_{Hgg} , g_{Hbb} , g_{Hcc}).

Compare sensitivity when **<u>different assumptions on</u>** efficiency/rejection of taggers (or alternative working) points) are used.

Measurement of hadronic Higgs boson branching ratios at FCC-ee with ZH events at √s=240 GeV

Giovanni Marchiori (APC Paris) Work down with Alexis Maloizel and Paul Guimbard (ENS Paris-Saclay)

Results with various tagging performance/WP scenarios

Strategy	b-tag ε _{b,} ε _c , ε _l , ε _g	c-tag ε _{b,} ε _c , ε _l , ε _g	g-tag ε _{b,} ε _c , ε _l , ε _g	
Nominal	80 / 0.4 / 0.05 / 0.7	2.0 / 80 / 0.9 / 2.5	2.0 / 5.0 / 15 / 80	
Nominal Perfor by Franco,×Lou	mance for flavou kas, and Michel	ur tagging are ta e 10 / 80 / 4.5 / 12.5	aken from note 10 / 25 / 75 / 80	
Eff - 10%	10/0.4/0.05/0.7	2.0/10/0.9/2.5	2.0/5.0/15/70	
Eff -20%	60 / 0.4 / 0.05 / 0.7	2.0 / 60 / 0.9 / 2.5	2.0 / 5.0 / 15 / 60	
WPc 90%	80 / 0.4 / 0.05 / 0.7	4.0 / 90 / 7.0 / 7.0	2.0 / 5.0 / 15 / 80	
WPc 70%	80 / 0.4 / 0.05 / 0.7	0.9 / 70 / 0.2 / 1.0	2.0 / 5.0 / 15 / 80	

Relative error on branching fractions

Higgs Hadronic decays at FCCee Collider

Reham Aly¹ - Jan Eysermans² – Michele Selvaggi³ Nicola De Filipplis¹ – Patrizia Azzi⁴ ¹ INFN, politecnico di Bari ² Massachusetts Institute of Technology ³ CERN - ⁴ INFN padova

couplings where all jets are known to come from the Higgs.

Studies for optimizing the jet algorithm and parameters with the aim of improving the signal peak resolution

Studies for detector configuration for optimising the expected precision

ZH analysis with Z(vv)H(hadronic) analysis to determine g_{Hgg} , g_{Hbb} , g_{Hcc} , g_{Hss}

and decay at NLO.

Can be probed in inclusive analysis looking at the two relevant energy points

Measure the Higgs boson sen-coupling that anects both Higgs boson production

Vertex corrections (linear in k_{λ})

and decay at NLO.

Statistics is the essence :

- combined analysis including ZH and VBF-H production @ 240 GeV & 365 GeV
- categorisation targeting exclusive Z decays

Joint FCC-France & Italy Workshop - 23/11/22 - Roberto Salerno - 17

Rejected

 g_{HHH}

Can be probed in inclusive analysis looking at the two relevant energy points

Inclusive Higgs self-coupling measurement at FCC-ee

Louis Portales FCC-France & Italy Workshop on Higgs, Top, EW & HF Physics Lyon – 22/11/2022

Sensivity driven by Z(qq)H category Adding ZH@365GeV resolves degerated minima Negligible impact from VBF $e^+e^- \rightarrow ZH \rightarrow ij + X$ 935000 WW ZZ √s = 240.0 GeV 86 Zqq $L = 5 ab^{-1}$ N 25000 steps - ZH sel_noBDT_ijH cut, $\beta_{ii} > 0.3710$ 20000 15000 10000 5000 100 120 140 160 180 20 60 80 m_{Rec} [GeV]

ln(LL) — Ζ(μμ)Η Z(ee) Z(aa) Combined --- Combined + HL-LHC 12 δκ 8 10 -In(LL) 14⊢ 12⊢ - - - 110 12 δκ, 10 8

Top quark physics EW top couplings

A million of $t\bar{t}$ events in a clean environment

100 part

ior

Probing the top quark FCNC anomalous couplings at FCCee

 $\frac{c}{2m_t}\bar{q}\sigma^{\mu\nu}(\lambda_{qt}^L P_L + \lambda_{qt}^R P_R)tA_{\mu\nu} \log (IPM), \text{ Mojtaba Mohammadi (IPM),}$

- Hamzeh Khanpour (UDINE & ICTP)
 - in collaboration with
- Patrizia Azzi (INFN), and Emmanuel Francois Perez (CERN)

Any observation of these rare Flavor-Changing Neutral Current transitions would be a clear signal of new physics beyond the SM

Focusing on the *tqy* interactions at $\sqrt{s} = 240$ GeV in single-top quark production processes

Study of jet clustering algorithms and jet recombination schemes

Probing the top quark FCNC anomalous couplings at FCCee

Hamzeh Khanpour (UDINE & ICTP)

in collaboration with

0.03

0.02

0.01

Patrizia Azzi (INFN), and Emmanuel Francois Perez (CERN)

Any observation of these rare Flavor-Changing Neutral Current transitions would be a clear signal of new physics beyond the SM

Focusing on the tqy interactions at $\sqrt{s} = 240$ GeV in single-top quark production processes

FCC-ee (240 GeV)	$Br(t \rightarrow c\gamma)$	$Br(t \rightarrow cZ)$
Electron Channel	6.19×10^{-5}	2.27×10^{-5}
Muon Channel	4.45×10^{-5}	1.63×10^{-5}

Next steps : consider a MVA /analysis searches for top quark FCNCs in the decay of a top quark from tt production at 365 GeV

Combination of different scales to have synergies in global interpretations due to a common set of operators

Combination of different scales to have synergies in global interpretations due to a common set of operators

DELPHES

Simulation

Geant4

Input from detector simulation (EDM4HEP) format

Reading using KEY4HEP <u>code</u>

Dumping algorithm, input variables for N

NN training using *Tensorflow* on CP

0.175 -

0.150 -

0.125

0.100

0.075

0.050 -

0.025 -

0.000 -

72.61 / 7

4.384e-13

1.768 ± 0.05725

00

___ ____

Simulation of IDEA

Lorenzo Capriotti on behalf of the IDEA software group

Next steps scattered points ZH hadronic decay Introduction of ParticleNet Inclusion of systematics uncertainties Tagging of strange jet

Full simulation

Better optimisation of the event selection to suppress more backgrounds

Next steps scattered points

ZH hadronic decay Introduction of ParticleNet Inclusion of systematics uncertainties Tagging of strange jet **Full simulation**

Synergies

Optimised event selection for Z(II)H Flavour-tagging algorithm Zbb selection (EWK-Top analyses)

Better optimisation of the event selection to suppress more backgrounds

Jet clustering algorithms and jet recombination schemes

