FCC

FCC FRANCE-ITALY Workshop, Lyon 21-23 Nov 2022

FCC-ee PHYSICS & SOFTWARE

Patrizia Azzi (INFN/CERN)

Overview and mid-term deliverables

Introduction

- the difference in the physics focus at the different \sqrt{s} 0
- the difference in the event kinematic of running from 90GeV (and possibly below) up to 0 365GeV
- the challenge of being able to achieve superbe precision on SM processes but also perform 0 unique direct searches for new physics

fully explored yet, even in terms of sensitivity.

detector requirements, reconstruction tools, calibration techniques.

The physics landscape of the FCC-ee program extends in all possible directions:

- The list of interesting processes and measurement is extensive, and it has not been
- From this richness, we need to extract concrete benchmark measurements that will be used to extract requirements on what is missing to achieve our ambitious goals:

Can produce all the heaviest particles of the Standard Model

ZH maximum	√s ~ 240 GeV	3 years	
tt threshold	√s ~ 350 GeV	5 years	
Z peak	√s ~ 91 GeV	4 years	5
WW threshold+	√s ≥ 161 GeV	2 years	;
s-channel H	√s = 125 GeV	? Years	~

at the needed E_{cm} Clean environment Precise knowledge of the center-of-mass energy and of the luminosity

√s errors

2 MeV

5 MeV

< 100 keV

< 300 keV < 200 keV

The FCC Feasibility Study

Design new detector concepts to realise the physics potential of the FCC-ee

both in term of precision and sensitivity 0

Focus on benchmark studies

that represent the physics goals and allow to extract the detector requirements 0

Need to develop simulation and analysis tools to get this done

- Timeline: Feasibility study to provide input for the next EPPSU (~2026/7)
- Mid-Term Report to be prepared in Fall 2023

Deliverables for Physics, Experiment & Detectors (1)

1. Documentation of the specificities of the FCC-ee and FCC-hh physics cases and their complementarity for the characterisation of the Standard Model Higgs boson and other processes;

- Consolidation of the physics case and detector concepts for both colliders
- ...()... for FCC-ee several detector concepts are being considered and benchmarked to meet the requirements of ultra-precise Higgs boson and electroweak measurements.
- ...()...Detector design and R&D will proceed in collaboration with the R&D for future detectors initiative at CERN, and with the activities that will emerge from the Detector Roadmap being developed under the auspices of ECFA.

Deliverables for Physics, Experiment & Detectors (2)

- 2. Strategic plans for the **improved theoretical calculations** needed to reduce the theoretical measurements.
 - See Fulvio Piccinini's talk
- view to matching the expected statistical precision for the most important measurements.
 - performances that satisfy the ultimate desired measurement uncertainty.
 - general-purpose detectors and detectors primarily targeting specific physics of

uncertainties towards matching the FCC-ee expected statistical precision for the most important

3. First documentation of the main detector requirements to be able to fully exploit the FCC-ee physics opportunities, in particular to reduce the experimental systematic uncertainties with a

• Improve the evaluation of the requirements for FCC-ee experiments using key physics processes that drive the physics case as benchmarks. This will be done using fast or fully simulated data, to extract the necessary

• Particular emphasis on identification of the main systematic uncertainties and on strategies to reduce them to meet the expected statistical precision. Development and evaluation of experiment concepts, for both CASE S'I

How to get there? - Tailored PED pillar organisation

Main driver:

- One software to support all cases (FCC-ee, hh, eh) with a modular structure to allow for evolution 0 **Neecessary functionalities:**
- Parameterized (fast) simulation with same output as full simulation 0
- Algorithm development before full simulation is available
- Sub-detector Plug&Play mechanism: easy switch of detector solution 0 Computing:
- FullSimulation of all cases unrealistic
- Interplay of full/fast/parameterized simulation crucial 0
 - Crucial synergy with Physics Performance and Detector WPs

How to get there? – Software & Computing

Key4HEP, the common software vision

provide a ready-to-use full-fledged data processing solution for HEP experiments

Complete set of tools

- Generation, simulation, reconstruction, analysis
- Build, package, test, deploy, run

Common Core ingredients

- PoDIO for EDM4hep, based on LCIO and FCC-edm
- Gaudi framework, devel/used for (HL-)LHC
- **DD4hep** for geometry, adopted at LHC
- **Spack** package manager, lot of interest from LHC

Community project

- Unifying communities, synergetic enterprise
- Contributions from CLIC, ILC, FCC, CEPC and EIC

Full support by ECFA, AIDA, CERN EP R&D

Create a software ecosystem integrating in optimal way various software components to

Kick-off meetings Bologna (6/2019), Hong Kong (1/2020) <u>Weekly working meetings</u> Deliverables already used in large scale production

Software & Computing: status

Current workflows

- Parametrized simulation 0
 - **Delphes based studies**
- Analysis 0

 - Fully based on EDM4hep (Key4hep)
- **Full simulation** 0

 - Extensive experience from Linear Collider community very important

Computing

- Home based solution for MC productions 0
 - Mostly based on CERN in-kind resources

G. Ganis

Improved tracking: realistic output allows to design/develop advanced algorithms

Developed a framework based on latest ROOT technology being pushed for HL-LHC

Workflow being consolidated together w/ Physics Performance/Detector Concepts WGs

Software & Computing: next priorities

Simulation:

 \circ Forming new experts in DD4HEP description. —> Streamline the sub-detector Plug&Play technology

Reconstruction

- Review/integrate the algorithms developed from the Linear Collider studies and LHC
- Foster integration in Key4Hep for packages such as Pandora (ParticleFlow) and ACTS(Tracking)

Analysis

- Consolidate current approach based on RDataFrame. Adding reduced format for simplified navigation
- New Tutorials and examples to help newcomers
- Provide visualisation tool (event Display)

Computing:

• Development of distributed computing model (CNAF, BARI, DESY) for central production of samples

Physics & Detector requirements Higgs/EW/Top_{A. Dam}

"Higgs Factory" Programme

- At two energies, 240 and 365 GeV, collect in total •
 - 1.2M HZ events and 75k WW \rightarrow H events
- Higgs couplings to fermions and bosons •
- Higgs self-coupling (2-4 σ) via loop diagrams •
- Unique possibility: measure electron coupling in • s-channel production $e^+e^- \rightarrow H @ \sqrt{s} = 125 \text{ GeV}$

Ultra Precise EW Programme & QCD

Measurement of EW parameters with factor ~300 improvement in *statistical* precision wrt current WA

- 5x10¹² Z and 10⁸ WW
 - m_Z , Γ_Z , Γ_{inv} , $\sin^2\theta_W^{eff}$, R^Z_ℓ , R_b , α_s , m_W , Γ_W ,...
- 10⁶ tt

 m_{top} , Γ_{top} , EW couplings

Indirect sensitivity to new phys. up to Λ =70 TeV scale

... are these requirements enough to design our best detector?

DETECTOR REQUIREMENTS

- Momentum resolution at $p_T \sim 50$ GeV of $\sigma_{pT}/p_T \simeq$ 10⁻³ commensurate with beam energy spread
 - Jet energy resolution of 30%/VE in multi-jet environment for Z/W separation
 - Superior impact parameter resolution for c, b tagging

DETECTOR REQUIREMENTS

- Absolute normalisation (luminosity) to 10⁻⁴ •
- Relative normalisation (e.g. $\Gamma_{had}/\Gamma_{\ell}$) to 10⁻⁵
- Momentum resolution "as good as we can get it"
 - Multiple scattering limited
- Track angular resolution < 0.1 mrad (BES from $\mu\mu$)
- Stability of B-field to 10^{-6} : stability of Vs meast.

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

FCC-ee at the intensity frontier

TeraZ offers four additional pillars to the FCC-ee Higgs/EW/Top physics programme

Flavour physics programme

- Enormous statistics 10¹² bb, cc
- Clean environment, favourable kinematics (boost)
- Small beam pipe radius (vertexing)
- Flavour EWPOs (R_b , $A_{FB}^{b,c}$) : large improvements wrt LEP
- CKM matrix, CP violation in neutral B mesons 2.
- 3. Flavour anomalies in, e.g., $b \rightarrow s\tau\tau$

Tau physics programme

- Enormous statistics: 1.7 10¹¹ $\tau\tau$ events
- Clean environment, boost, vertexing
- Much improved measurement of mass, lifetime, BR's
- τ -based EWPOs (R_{τ} , A_{FB}^{POI} , P_{τ}) 1.
- Lepton universality violation tests
- PMNS matrix unitarity Э.
- Light-heavy neutrino mixing 4.

Slide by P. Janot Ecfa meeting 19 Nov 2021

QCD programme

- Enormous statistics with $Z \rightarrow \ell \ell$, qq(g)
- Complemented by 100,000 H \rightarrow gg
- $\alpha_{\rm S}({\rm m}_{\rm Z})$ with per-mil accuracy
- Quark and gluon fragmentation studies
- Clean non-perturbative QCD studies

Often statistics-limited Often statistics-minimum 5. 10¹² Z is a minimum Rare/BSM processes, e.g. Feebly Coupled Particles Intensity frontier offers the opportunity to directly

- observe new feebly interacting particles below m_Z
- Signature: long lifetimes (LLP's)
- Other ultra-rare Z (and W) decays
- Axion-like particles
- Dark photons
- 3. Heavy Neutral Leptons

FCC-ee at the intensity frontier

... which in turn provide specific detector requirements

Flavour physics programme

- Formidable vertexing ability; b, c, s tagging
- Superb electromagnetic energy resolution
- Hadron identification covering the momentum range expected at the Z resonance

Tau physics programme

- Momentum resolution Mass measurement, LFV search
- Precise knowledge of vertex detector dimensions Lifetime measurement
- Tracker and ECAL granularity and $e/\mu/\pi$ separation BR measurements, EWPOs, spectral functions

Slide by P. Janot Ecfa meeting 19 Nov 2021

If all these constraints are met, Higgs and top programme probably OK (tbc)

Current Detector concepts

CLD

- CLIC detector -> CLD
- 2T solenoid outside Calo
- Full Si vtx + tracker
- **CALICE-like calo**
- RPC muon system \bullet

1911.12230, 1905.02520

- 2T thin solenoid within Calo
- Si vtx detector
- Ultra light drift chamber \bullet
- Dual Readout calo+preshower lacksquare
- Possible crystal ECAL
- MPGD (μ -rwell) muon system

CERN-ACC-2018-0057

IDEA

Noble Liquid ECAL based

- High granularity ECAL lacksquare
 - Pb+Lar (or W+LKr)
- Drift chamber (or Si) tracker; \bullet CALICE-like HCAL; muon sys.
- Coil in same cryostat as LAr \bullet

Detector Simulations

10²-10³ s/ev

Full simulation:

- simulates all particle-detector interaction (e.m/hadron 0 showers, nuclear interaction, brem, conversions) with GEANT
- In fast development, will be the standard for the final 0 feasibility studies

10-2-10-1 s/ev

Parametric simulation (Delphes):

- parameterise detector response at the particle level (efficiency, resolution on tracks, calorimeter objects)
- reconstruct complex objects and observables(use particle-0 flow, jets, missing ET, pile-up ...)
- Many features added: full covariance matrix for tracking, vertexing, LLP, PID with dN/dx, timing...
- **Basis for the mid-term report**

See M. Selvaggi <u>shorturl.at/oruxA</u>

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

Exploiting the detector potential

Particle Identification in DRCalo: γ/π^0 : The extremely high 2Dgranularity of the IDEA Calorimeter brings to some spectacular results. An example is the π^0 identification from two γ -initiated showers

A quantitative analysis on the possibility to distinguish between π^0 0 and γ was performed using a convolutional neural network. Results on events with no selection and fully digitised.

Develop powerful identification techniques to optimise physics potential for tau physics with the IDEA detector. Starting from DR Calorimeter information, to be extended

- Very promising realistic performances using full sim of DR Calorimeter 0 + simulation of SiPM
- implementation of of individual object identification inside jet/tau 0 images (e, mu, photons, pions, ...), as a first prototypal particle flow algorithm

PFLow with DR calo: NN based algorithm within the Pandora framework, started. IT

TALKS in PARALLEL SESSION TOMORROW

18

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

Some **chosen** priority case studies for Higgs physics (of course not the FULL program!) Goals of a "case study":

- to identify major systematics
- dependence on detector performance or machine conditions
- Develop strategies for evaluation/reduction of systematics at the analysis level

TALKS in PARALLEL SESSION TOMORROW!

Case studies – Higgs Physics

M(H) and $\sigma(ZH)$ in HZ, Z in leptons M(H) and $\sigma(ZH)$ in HZ, Z in hadrons Invisible Higgs $H \rightarrow b\bar{b}, c\bar{c}, s\bar{s}$ couplings)**IT** $\Gamma(H)$ in $ZH, H \rightarrow ZZ^*$ $\Gamma(H)$ in *bbvv* events $HZ\gamma$ coupling Higgs self-coupling $ee \rightarrow H$, s-channel production

Other Higgs highlights

final states for Z and Higgs. Exploiting sophisticated flavour taggers with ML (ParticleNet)

- Rising interest in Strange tagging bringing constraints on detector PID performance, timing. For IDEA combined PID with dN/dx and TOF(30ps): $3\sigma K/\pi$ separation for p<30GeV
 - several active groups: V. Cairo et al using ILD tools proposing a RICH; E. Ploerer, K. Gautam et al. developing a new CNN approach

BR(H->DM)

V. Cairo et al

Recoil method the basis for many studies. First results with Z to leptons, now adding hadronic

• **Higgs Invisible** studies: exploiting all channels to control uncertainties and push the sensitivity for the

CONVENERS

S. Monteil, A. Lusiani

J. Kamenik, G. Isidori

The intensity frontier – Flavor physics

- Enormous statistics 10¹² bb, cc lacksquare
- Clean environment, favourable kinematics (boost) ${\color{black}\bullet}$
- Small beam pipe radius (vertexing) ${\color{black}\bullet}$

Working point	Lumi. / IP $[10^{34} \text{ cm}]$	$^{-2}.\mathrm{s}^{-1}]$	Tota	al lumi	i. (2 IF	$\mathbf{P}\mathbf{S}$)	Run time	Physics goal	
Z first phase	100		26	5 ab^{-1}	/year		2		
Z second phase	e 200		52	2 ab^{-1}	/year		2	150 ab^{-1}	
Pa	article production (10^9)	B^0	B^-	B_s^0	Λ_b	$c\overline{c}$	$ au^- au^+$	~15 times	Relle's stat
	Belle II	27.5	27.5	n/a	n/a	65	45		
	FCC-ee	400	400	100	100	800	220	Boost at th	e Z!

Decay mode	$B^0 \rightarrow K^*(892)e^+e^-$	$B^0 \to K^*(892)\tau^+\tau^-$
Belle II	$\sim 2\ 000$	~ 10
LHCb Run I	150	-
LHCb Upgrade	~ 5000	-
FCC-ee	~ 200000	~ 1000

I. Flavour EWPOs $(R_b, A_{FB}^{b,c})$: large improvements wrt LEP CKM matrix, CP violation in neutral B mesons Flavour anomalies in, e.g., $b \rightarrow s\tau\tau$ 3.

$$\begin{array}{c} {\rm B_s(B^0) \to \mu^+ \mu^-} \\ \\ {n/a~(5)} \\ \sim 15~(-) \\ \sim 500~(50) \\ \sim 1000~(100) \end{array}$$

Yelds for flavor anomalies studies: b \rightarrow sll yelds and $B^0 \rightarrow K^{*0} \tau^+ \tau^-$ Full reconstruction possible

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

Flavor physics – Case studies

Many ongoing activities, lots of work to do:

- Improved Delphes suitable for a first pass and setup of the analysis tools.
- Excellent benchmarks for track and vertex resolution, Particle ID, EM resolution for final states with neutrals
- Some arXiv available, need to be verified with proper simulation, **reconstruction and analysis tools.**

 $B_{\mu}/B_{c} \rightarrow \tau \nu_{\tau}$: paper out, new improved version in progress

 $B_s \rightarrow D_s K$: test bench for vertexing tools and EM calo requirement (including neutrals) https://arxiv.org/abs/2107.02002

 $B_s \rightarrow K^* \tau \tau$: testing effects of detector performance on background reduction (vertexing res., PID)

 $B_s \rightarrow \phi \phi$ https://arxiv.org/abs/2205.07823 strong requirements on mom resolution, vertexing, PID. Relevant for CP violation and NP

 $B^+ \rightarrow D^0 K^+$: to measure γ_s . Study of effects of vertexing, resolution, but also comparing different performance of tracker concepts (2107.02002, 2107.05311)

 $B_s \rightarrow K^* \nu \nu$: relevant for NP. Vertexing and PID crucial

Study example for $B^+ \rightarrow D^0 K^+$ with new tools *E. Perez*

https://arxiv.org/pdf/2107.05311.pdf

IDEA

Good efficiency also at big displacements

CLD big effect of losing a layer hit Modified default card, similar vtx res, worse mass res.

), Lyon 21–23 Nov 2022

Tau Physics Case Studies

Tau physics very rich source of measurements constraining the detector requirements.

Some initial studies starting with Delphes, focusing on tool development for tau identification.

- FullSimulation necessary for further steps and detector requirements
- Some initial studies already happening in the context of the development of reconstructions tools (such as Tau ID in DR Calorimeter)

Tau lifetime

Tau mass

Tau leptonic BR

Tau polarisation and exclusive BR

LFV in Z and tau decays

- Belle-II can (at most) reach an error ~ 0.3 × 10-3
- FCC-ee could go below 10-4

LFU tests

NP expectation from current anomalies in the range $(0.2 - 4.0) \times$ 10-3 (SM theory precision \sim 10-5)

sensitivity good enough to probe BSM models "explaining" current flavour R_K anomalies (b→cτν)

Electroweak & QCD Case Studies

EWK (Z) Z width R_b, R_c, R_ℓ $A_{FB}(bb, cc)$ IT $A_{FB}(muons)$ Luminosity from di-photons/NP Coupling of Z to \mathcal{V}_{ρ} (NP)

Tera-Z program is a dream for EWK measurements. Bound to bring very strong requirements also on acceptance and stability and alignment of the detector (construction tolerance, design choices) Some preliminary papers/studies with parameterised approach.

• Few studies started with new tools and detector simulation: $A_{FB}(bb, cc)$, TGCs, Z width

EWK (W)

- W polarisation
- M(W) from direct reconstruction
 - $\sigma(WW)$ for M(W), TGCs FR
 - Vcb from $W \rightarrow cb$
 - W leptonic BRs
 - \sqrt{s} via radiative returns

QCD

 $\alpha_{S}(M_{Z})$

Quark and Gluon

fragmentation studies

C. Paus G. Wilson

A. Freitas

CONVENERS QCD D. D'Enterria

Top physics – Case Studies

Top physics studies can happen during different running phases:

- **Threshold run** for ultra-precise mass measurement and other properties
 - Needs excellent control of beam energy, beam energy spread, luminosity spectrum $(\Delta m/m \approx 3 MeV)$ and ISR : generator description to study effects
- Vs=365GeV for measurement of other properties such as Electroweak couplings or anomalous couplings (FCNC). Also possible at **vs=240GeV** for anomalous single top production
 - Constraints on jet reconstructions, b-tagging, fitting algorithms, overall performance of detectors in full event reconstruction

Top events due to their large number and variety of particles in the final state are a fundamental validation tool for the software and detector performance!

> Properties at threshold(mass, width, Yukawa) EWK couplings Anomalous Couplings(FCNC) IT **EFT Interpretations** FR

TALKS in PARALLEL SESSION TOMORROW!

sensitivity to:

20

15

 \bigcirc

 C_{fM}^{\dagger}

 $_{\rm B}($

-2

-1

 C_{tW}

 ∇

= 0)

 $A_{
m FB}(C_{tW}$

 $A_{\rm FB}$

Rohrig, Madar, Guerry, et al. 23 Nov 2022

 $\frac{\partial}{\partial C_{tW}}$

Direct BSM Case Studies

Tera-Z statistics pushes the limits of the sensitivity to feebly interacting particles.

In particular, can explore the range of small coupling and potentially large displacements.

Rich interaction between phenomenologist and experimentalist especially for the LLP case https://arxiv.org/abs/2203.05502

Detector Requirements

- Sensitivity to far-detached vertices (mm \rightarrow m) I. Tracking: more layers, continuous tracking 2. Calorimetry: granularity, tracking capability
- Larger decay lengths \Rightarrow extended detector volume
- Full acceptance \Rightarrow Detector hermeticity
- Timing???

CONVENERS BSM R. Gonzalez-Suarez, G. Polesello S. Heinemeyer, T. You

Heavy Neutral Lepton

Exotic Higgs

Dark Photons

Axion Like Particles

- Help develop/validate new tools for analysis with Delphes
- FullSim, advancement in Geant simulation, machine backgrounds etc, needed to fully explore the ultimate sensitivity reach.

Example: Long Lived HNL CASE STUDY

HNL "case study" in progress. Upgraded Delphes for LLP

[Valid when $m_N \lesssim 100 \text{ GeV}$, <u>arXiv:1905.11889</u>]

Get long-lived HNLs when coupling and mass are small

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

LOIs to Snowmass, <u>challenges</u>: <u>https://indico.cern.ch/event/951830/</u>

EPJ+ special issue "A future Higgs and EW Factory: Challenges towards discovery" **EXCELLENT STARTING POINT!**

2	Intr	roduction (2 essays)
	2.1	Physics landscape after the Higgs discovery [1]
	2.2	Building on the Shoulders of Giants [2]
3	Par fror	t I: The next big leap – New Accelerator technologies to reach the precisi ntier [3] (6 essays)
	3.1	FCC-ee: the synthesis of a long history of e^+e^- circular colliders [4]
	3.2	RF system challenges
	3.3	How to increase the physics output per MW.h?
	3.4	IR challenges and the Machine Detector Interface at FCC-ee [5]
	3.5	The challenges of beam polarization and keV-scale center-of-mass energy calibration \mathcal{L}_{r}
	3.6	The challenge of monochromatization [7]
4	Par	t II: Physics Opportunities and challenges towards discovery [8] (15 essay
	4.1	Overview: new physics opportunities create new challenges [9]
	4.2	Higgs and top challenges at FCC-ee [10]
	4.3	Z line shape challenges : ppm and keV measurements [11] Challenges to m
	4.4	Heavy quark challenges at FCC-ee [12]
/	4.5	The tau challenges at FCC-ee [13]
	4.6	Hunting for rare processes and long lived particles at FCC-ee [14]
	4.7	The W mass and width challenge at FCC-ee [15]
	4.8	A special Higgs challenge: Measuring the electron Yukawa coupling via s-channel Higgs production [16]
	4.0	A special Higgs shallonger. Measuring the mass and erest section with altimate
	4.9	precision [17]

	3			All 34 references in this Overleaf docu
	3			https://www.overleaf.com/read/xcssxq
	3			
on	4		4.10	From physics benchmarks to detector requirements [18]
	4	/	4.11	Calorimetry at FCC-ee [19]Detector requireme
	4		4.12	Tracking and vertex detectors at FCC-ee [20] & possible solution
	4		4.13	Muon detection at FCC-ee [21]
	4		4.14	Challenges for FCC-ee Luminosity Monitor Design [22]
-	4		4.15	Particle Identification at FCC-ee [23]
[6]	4			
	4	5	Par	t III: Theore tical challenges at the precision frontier [24] (7 essays)
			5.1	Overall perspective and introduction
s)	4		5.2	Theory challenges for electroweak and Higgs calculations $[25]$
	5		5.3	Theory challenges for QCD calculations $\dots \dots \dots$
	5		5.4	New Physics at the FCC-ee: Indirect discovery potential [26] challenges
	5		5.5	Direct discovery of new light states [27]
atc	h_{5}		5.6	Theoretical challenges for flavour physics [28]
io'n	6		5.7	Challenges for tau physics at the TeraZ [29]
.)	6	~		
	7	6	Par	t IV: Software Dev. & Computational challenges (4 essays)
	·		6.1	Key4hep, a framework for future HEP experiments and its use in FCC
L	7		6.2	Offline computing resources and approaches for sustainable computing
	'		6.3	Accelerator-related codes and interplay with FCCSW
	7		6.4	Online computing challenges: detector & readout requirements [30]
	÷			shallanzaa
		00		Challenges
				challenges

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

Integrated organization of the Physics WPs

Full integration between Phys.Programme and Phys. Performance Integration with new Detector Concept WP ramping up Monthly Physics meetings with flexible agenda to accomodate "transverse" topics

Take away message

A first round of analyses to frame the impressive physics case of the FCC-ee was summarized in the CDRs

- Working in the new software framework (KEY4HEP), common to all future projects
- An organisation in place to help get started quickly and efficiently to cover as many topics as possible
- Timeline: Analyses ready by June FCC Week for mid-term report

Mid-Term Report of the FCC Feasibility Study to appear at the end of 2023 with new & updated detector concept proposals to realise the needs of the physics programme

CURRENT focus on « case studies » to determine the detector requirements needed to achieve the desired precision and to inform the technology choices for detector concepts

BACKUP

FCC-ee as a Higgs factory and beyond

Higgs provides a very good reason why we need both e+e- AND pp colliders

- FCC-ee measures g_{HZZ} to 0.2% (absolute, model-independent, sta 0 candle) from σ_{7H}
 - Γ_{H} , g_{Hbb} , g_{Hcc} , $g_{H\tau\tau}$, g_{HVVV} follow
 - Standard candle fixes all HL-LHC couplings
- FCC-hh produces over 10¹⁰ Higgs bosons
 - (1st standard candle \rightarrow) $g_{H\mu\mu}$, $g_{H\gamma\gamma}$, $g_{HZ\gamma}$, Br_{inv}
- FCC-ee measures top EW couplings ($e+e-\rightarrow tt$) 0
 - Another standard candle
- FCC-hh produces 10⁸ ttH and 2. 10⁷ HH pairs
 - (2nd standard candle \rightarrow) g_{Htt} and g_{HHH}

FCC-ee + FCC-hh is outstanding

All accessible couplings with per-mil precision; self-coupling with per-cent precision

	Collider	HL-LHC	$\text{FCC-ee}_{240 \rightarrow 365}$	FCC-INT
andard	Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30
	Years	10	3 + 1 + 4	25
	g_{HZZ} (%)	1.5	$0.18 \ / \ 0.17$	0.17/0.16
	$g_{\rm HWW}$ (%)	1.7	$0.44 \ / \ 0.41$	0.20/0.19
	$g_{ m Hbb}~(\%)$	5.1	$0.69 \ / \ 0.64$	0.48/0.48
	$g_{ m Hcc}~(\%)$	\mathbf{SM}	1.3 / 1.3	0.96/0.96
—	$g_{\mathrm{Hgg}}~(\%)$	2.5	1.0 / 0.89	0.52/0.5
	$g_{\mathrm{H} au au}$ (%)	1.9	$0.74 \ / \ 0.66$	0.49/0.46
	$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9 / 3.9	0.43/0.43
	$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	3.9 / 1.2	0.32/0.32
	$g_{\mathrm{HZ}\gamma}$ (%)	11.	- / 10.	0.71/0.7
	$g_{ m Htt}$ (%)	3.4	10. / 3.1	1.0/0.95
	$g_{ m HHH}$ (%)	50.	44./33. 27./24.	2-3
	$\Gamma_{\rm H}$ (%)	SM	1.1	0.91
	BR_{inv} (%)	1.9	0.19	0.024
	BR_{EXO} (%)	SM(0.0)	1.1	1

FCC-ee is also the most effective way toward FCC-hh

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

With highest luminosities at 91, 160 and 350 GeV Complete set of EW observables can be measured Precision (10⁻³ today) down to few 10⁻⁶

e.g., m_Z (100 keV), Γ_Z (25 keV), $\alpha_{QED}(m_Z)$ (3.10⁻⁵), sin² θ_w (3. 10⁻⁶), m_W (<500 keV), m_{top} (20 MeV)

Benefiting from \sqrt{s} calibration with resonant depolarisation at 91 and 160 GeV

- Precision unique to FCC-ee, with smallest parametric errors
- <u>Challenge</u>: match syst. uncertainties to the stat. precision
 - A lot more potential to exploit with good detector design than the present treatment suggests
 - Theory work is critical and initiated
- Precision = discovery potential (e.g., NP in Z/W propagators)
- Generic discovery potential: Show that SM does not suffice
- <u>Challenge</u>: test specific models with ALL information
 - Clarify the need for precision from a theoretical perspective
 - Explain how FCC-ee go towards answering big questions in fundamental physics

FCC-ee AS AN ELECTROWEAK FACTORY

- coupling. Scan strategy can be optimized
 - for a 10% precision (profiting of the better α S).
 - But, HL-LHC result of about 3.1% already better (with FCC-ee Higgs measurements removing the model dependence)

level of 10⁻²-10⁻³) and FCNC in the top sector.

TOP PHYSICS AT FCC-ee

Threshold region allows most precise measurements of top mass, width, and estimate of Yukawa

FCC-ee has some standalone sensitivity to the top Yukawa coupling from the measurements at thresholds

Run at 365 GeV used also for measurements of top EWK couplings (at the

Flavor physics potential

- Enormous statistics 10¹² bb, cc lacksquare
- Clean environment, favourable kinematics (boost)
- Small beam pipe radius (vertexing)

Working po	oint	Lumi. / IP $[10^{34} \text{ cm}]$	$^{-2}.\mathrm{s}^{-1}]$	Tota	al lumi	1. (2 II)	\mathbf{Ps})	Run time	Physics goal	
Z first pha	ase	100		2	6 ab^{-1}	/year		2		
Z second pl	hase	200		52	2 ab^{-1}	/year		2	150 ab^{-1}	
	Part	icle production (10^9)	B^0	B^-	B_s^0	Λ_b	$c\overline{c}$	$ au^- au^+$	~15 times P	Allo's stat
-		Belle II	27.5	27.5	n/a	n/a	65	45		
					•	•				

Decay mode	$B^0 \to K^*(892)e^+e^-$	$B^0 \to K^*(892)\tau^+\tau^-$
Belle II	$\sim 2\ 000$	~ 10
LHCb Run I	150	_
LHCb Upgrade	~ 5000	_
FCC-ee	~ 200000	~ 1000

- I. Flavour EWPOs $(R_b, A_{FB}^{b,c})$: large
 - improvements wrt LEP
- 2. CKM matrix, CP violation in neutral B mesons
- Flavour anomalies in, e.g., $b \rightarrow s\tau\tau$ 3.

$$\frac{B_{s}(B^{0}) \rightarrow \mu^{+}\mu^{-}}{n/a (5)}$$
~ 15 (−)
~ 500 (50)
~1000 (100)

Yelds for flavor anomalies studies: b→sll yelds and $B^0 \rightarrow K^{*0} \tau^+ \tau^-$ Full reconstruction possible

P. Azzi – 1st FCC FR–IT Workshop, Lyon 21–23 Nov 2022

THE ANALYSIS

Study the decays:

- 1. $B_{s}^{0} \rightarrow D_{s}^{\pm}K^{\mp}$
- 2. $B_s \rightarrow J/\psi \phi$
- with the final objective (for the fast-sim) to estimate $\varphi = \gamma_{CKM} + \gamma_{ds} - 2\beta_s$ and $2\beta_s$

With 75 (310) billions of B_{s}^{0} (B⁰) a statistical precision of 0.4° on γ (3.4° x 10⁻² on β_s) is expected and can be compared with the present measurements...

FCC-ee at the intensity frontier

TeraZ offers four additional pillars to the FCC-ee physics programme

Flavour physics programme

- Enormous statistics 10¹² bb, cc
- Clean environment, favourable kinematics (boost)
- Small beam pipe radius (vertexing)
- I. Flavour EWPOs $(R_b, A_{FB}^{b,c})$: large improvements wrt LEP
- 2. CKM matrix, CP violation in neutral B mesons
- 3. Flavour anomalies in, e.g., $b \rightarrow s\tau\tau$

37

FCC-ee at the intensity frontier

... which in turn provide specific detector requirements

Flavour physics programme

- Formidable vertexing ability; b, c, s tagging
- Superb electromagnetic energy resolution
- Hadron identification covering the momentum range expected at the Z resonance

If all these constraints are met, Higgs and top programme probably OK (tbc)

19 Nov 2021

38

Case Studies

- extract detector requirements to achieve desired performance develop a detector simulation that allows this performance to be merged in the full analysis develop reconstruction algorithms that fully exploit the detector information develop calibration strategies and analysis techniques to shrink the uncertainties as needed Extract requirements on event generation and simulation of machine effects to ensure realistic predictions
- >>>"Case Studies": reverse engineering of a chosen benchmark process. The elements contributing to the final results are "unpacked" to allow maximal optimisation on all aspects.

Status of analysis efforts that were reported to PP meetings

Summarized in the next slides, color-coding :

Work on-going with the common tools	Work on-going with private tools or stand- alone Delphes	Recent pheno work	Not started, but people expressed interest	
--	---	----------------------	---	--

with some "shading" too

"Common tools" means :

- Delphes simulation samples within EDM4HEP,
- FCCAnalysis framework
 - the latter benefits from stand-alone developments or devels within ulletDelphes (e.g. vertex fitter, soon PID modules)

In most cases, 1 group = 1-2 people, part-time.

Higgs measurements

Measurement	Constraining	Person-power
Higgs boson coupling to c quark	Flavour tagging, vertexing	CERN Also interest from APC
σ(ZH) and mH, Z →leptons (Mrecoil); New scalars in Z + S	Lepton momentum & energy resolution	APC / Bologna / MIT (CERN) Good candidate to move to FullSim "soon".
σ(ZH) and mH, Z → hadrons ; BR(Higgs invisible)	hadronic mass and hadronic recoil-mass resolution ; Maybe b-tagging	MPI Munich
Γ(H) in ZH, H → ZZ*	Lepton ID efficiencies; jet clustering algorithms, jet directions, kinematic fits	CERN fellow expressed interest
Higgs boson mass in hadronic final states	b-tagging eff and purity, jet angular resolution, jet reco, kin fits	

Higgs measurements (2)

Measurement	Constraining	Person-power
Г(H) with bbnunu events	Visible and missing mass resolutions	
HZγ coupling	photon identification, energy and angular scale	
ee->H production in s-channel at Higgs pole	- q / g tagging	CERN (former analysis exists)

EW measurements at the Z peak

Measurement	Constraining	Person-power
Total width of the Z	Track momentum (and angular) resolution, scale (magnetic field) stability	CERN [but fellow left] Good candidate to move to FullSim "soon".
Rb, Rc, AFB of heavy quarks	Flavour tagging, acceptance, QCD corrections	QCD corr. studied at CIEMAT ; Udine
alphaS measurement	Z-> jets	LPNHE [report soon]
Ratio Rl	Geometrical acceptance for lepton pairs	
AFB (muons)	QED corrections	
Luminosity from diphoton events ; NP in diphotons	e/gamma separation, gamma acceptance	CIEMAT (NP, pheno)

EW measurements at WW

Measurement	Constraining	Person-power
Coupling of Z to nu_e (also, at the Z peak: invisible ALP, dark γ)	Photon energy resolution, acceptance, track efficiency	Saclay Udine
MW from WW -> had, semi-lep	Lepton and jet angles, Kinem fits	Saclay [2019]
(d)σ(WW) for MW, TGCs	Lepton ID, angular resolutions	LAPP
Vcb via W -> cb	Flavour tagging	Pisa + interest from postdoc?
W leptonic BRs	Lepton ID, acceptance	
Meas of √s via radiative return	lepton and jet angular resolutions, acceptance	

Tau physics

Case studies

- The measurement of the tau lifetime: accuracy of the construction and the alignment of the vertex detector
- The measurement of the tau mass: track momentum scale (in a multi-track collimated environment)
- The measurement of the tau leptonic branching fractions: electron and muon identification
- Tau polarisation and exclusive branching fractions: reconstruction of photons, $\pi 0s$ and other neutral particles, K/ π separation • Lepton Flavor violation in Z and tau decays: lepton momentum scale
- Delphes samples of limited use for (several of) these studies
- Goal of separation of tau decay modes has triggered FullSim studies: ullet
 - Clustering devels in FCCSW with the LAr [NBI]
 - NN-based tauID in the IDEA calo [Roma]

Flavour physics

Measurement	Constraining	Person-power
Bs to Ds K	Many things Vertexing, PID, EM resolution	Saclay / Ferrara (CERN)
Bc -> tau nu	Flight distance resolution (vertexing)	EPFL / CERN / Orsay
B -> K* tau tau	Flight distance resolution (vertexing)	Former work at Clermont
Modes with piO's	EM resolution	

Top physics

Measurement	Needs good:	Person-power
EW couplings of the top	Jet reco, b-tagging, kine fits	NBI
Top properties from threshold scan	Jet reco, b-tagging, kine fits	Strasbourg/Padova
FCNC couplings	Idem + photon reco	Tehran/Behshahr

ALPs / LLPs / Heavy Neutrinos

- - defining model benchmarks
 - Ο and detector requirements

 - Ο FullSim tracking in EDM4Hep
- \bullet CERN...)

Area with documentation in the Physics Performance Github collecting documentation and other info https://hep-fcc.github.io/FCCeePhysicsPerformance/case-studies/BSM/LLP/

 ee → aγ → 3γ Photon resolution separation of close-by photons displaced a vertices 	Pavia D-USi
- uispiaceu y vertices	FullSim needed
$\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ Photon resolution	CERN / Rio

• "Informal group" regular meetings involving both theorists and experimentalists. Focus:

better defining case studies to perform: they include both characterization of signals

first pass at having analysis code in place for validation of MC signals in Delphes need to develop specific tools to use Delphes in this context. Will profit largely of

Informal group mailing list ~50 names (including Uppsala, Graz, Geneva, Bologna, PD,