Overview of Theory / deliverables for the FCC Feasibility Study

Fulvio Piccinini

INFN, Sezione di Pavia

November 21, 2022

Joint FCC-France & Italy 2022 Workshop in Lyon, Lyon, 21 – 22 November 2022

F. Piccinini (INFN)

SM tested up to $\sim 200~\text{GeV}$ with e^+e^- colliders

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

- precision $\mathcal{O}(0.1\%)$ measurements of the processes $e^+e^- \rightarrow f\bar{f}$
- $\mathcal{O}(1\%)$ for the processes $e^+e^- \rightarrow WW/ZZ \rightarrow 4$ fermions

F. Piccinini (INFN)

LEP/SLC legacy at the Z pole

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

2012 \rightarrow Higgs boson @LHC: mass and width

ATLAS-CONF-2020-005

T.B. Ta, La Thuile 2022

- $\sim 0.1\%$ precision on Higgs mass
- Width (SM ~ 4 MeV)
 - $\Gamma < 14.4 \text{ MeV} (\text{ATLAS 36 fb}^{-1})$
 - $\Gamma < 3.2^{+2.4}_{-1.7}$ MeV (CMS)

$2012 \rightarrow Higgs$ boson @LHC

Production

- production (and decay) measured in several channels
- for some channel th. uncertainties of same order of exp systematics

Decay

ATLAS Coll., Nature 607 (2022) 7917

agreement with th. predictions

F. Piccinini (INFN)

2022: Higgs @LHC

• coupling strengths in the "k" framework

· agreement with th. predictions

F. Piccinini (INFN)

2022: Higgs @LHC

 $x_F \frac{m_F}{\sqrt{W_V}}$ or $\sqrt{K_V} \frac{m_V}{\sqrt{W_V}}$ ATLAS Run 2 $\mathbf{\overline{\Phi}} \kappa_c = \kappa_r$ κ. is a free parameter SM prediction 10-2 10-3 a н 10-4 κ_F or κ_V 1.4 1.2 0.8 10-1 10² 10 1 Particle mass [GeV]

CMS Coll., Nature 607 (2022) 7917

ATLAS Coll., Nature 607 (2022) 7917

Higgs self-coupling: sensitivity through

double Higgs production (at NLO or LO in associated production)

Borowka et al., arXiv:1604.06447; Grazzini et al., arXiv:1803.02463

• single Higgs production (at NNLO or NLO in associated production) and decay (at NLO or NNLO for $H \rightarrow \gamma \gamma$)

EW precision observables at two loops

Degrassi et al., arXiv:1702.01737; Kribs et al., arXiv:1702.07678

F. Piccinini (INFN)

Present sensitivity to \mathbf{k}_{λ}

• $k_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$

ATLAS, arXiv:2211.01216

- HH driven constraining power
- $-1.4 < k_{\lambda} < 6.1$ @95% CL

Present sensitivity to \mathbf{k}_{λ}

• $k_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$

ATLAS, arXiv:2211.01216

- HH driven constraining power
- $-1.4 < k_{\lambda} < 6.1$ @95% CL
- additional constraining power also from EWPO M_W and $\sin^2 \vartheta_{eff}^{\ell}$, in particular in view of future FCC precision

Degrassi et al., arXiv:2102.07651

• SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision

- SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision
- SM Higgs interaction with 3^{rd}-generation fermions tested with $\mathcal{O}(10\%)$ level
- SM Higgs interaction with $W\mathchar`-Z$ gauge boson tested at the $\mathcal{O}(10\%)$ level

- SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision
- SM Higgs interaction with 3^{rd}-generation fermions tested with $\mathcal{O}(10\%)$ level
- SM Higgs interaction with $W\mathchar`-Z$ gauge boson tested at the $\mathcal{O}(10\%)$ level
- hardly constrained SM Higgs self-coupling

- SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision
- SM Higgs interaction with 3^{rd}-generation fermions tested with $\mathcal{O}(10\%)$ level
- SM Higgs interaction with $W\mathchar`-Z$ gauge boson tested at the $\mathcal{O}(10\%)$ level
- hardly constrained SM Higgs self-coupling
- negative searches of New Physics at high energy

From low energy...: Muon g - 2 recent result

B. Abi et al., Phys. Rev. Lett. 126 (2021) 14, 141801 [arXiv:2104.03281[hep-ex]]

- Increased experimental precision expected soon
- puzzle of SM prediction based on LQCD

F. Piccinini (INFN)

LFU @LHC from *B* meson decays

Tensions in measurements involving the transitions

•
$$\mathbf{\bar{b}} \to \mathbf{\bar{c}}\ell^+ \nu_{\ell} (\mathbf{R}_D, \mathbf{R}_{D^*})$$

• $\bar{\mathbf{b}} \to \bar{\mathbf{s}}\ell^+\ell^ (\ell = \mu, e)$

e.g.

$$R_{K} = \frac{\frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to J/\psi(\to \mu^{+} \mu^{-})K^{+} \mu^{+} \mu^{-})}}{\frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to J/\psi(\to e^{+} e^{-})K^{+} e^{+} e^{-})}}}$$
$$R_{K^{*}} = \dots$$
$$R_{K^{0}_{S}} = \dots$$

G.M. Ciezarek, LHC Seminar, CERN 18/10/2022

R. Aaij et al. (LHCb Coll.), arXiv:2103.11769

F. Piccinini (INFN)

 $\sim 3~\sigma$ Joint FCC-France & Italy 2022

Exotic hadron spectroscopy

F. Blanc (LHCb Coll.), ICHEP 2022

Challenge for QCD in the non-perturbative regime

In addition to unanswered questions, e.g.

- Nature of EWSB
- Neutrino masses
- Higgs and Flavour
- Dark Matter
- Baryon asymmetry in the Universe
- Gravity

. . .

In addition to unanswered questions, e.g.

- Nature of EWSB
- Neutrino masses
- Higgs and Flavour
- Dark Matter
- Baryon asymmetry in the Universe
- Gravity

. . .

connections with Higgs in the following picture

What is the origin of the vast range of quark and lepton masses in the Standard Model?

- Are there modified interactions to the Higgs boson and known particles?
- Does the Higgs decay into pairs of quarks and leptons with distinct flavours (for example, H → μ⁺τ)?

What is dark matter?

- Can the Higgs provide a portal to dark matter or a dark sector?
- Is the Higgs lifetime consistent with the Standard Model?
- Are there new decay modes of the Higgs?

What is the origin of the early-universe inflation?

- Is the Higgs connected to the mechanism that drives inflation?
- Are there any imprints in cosmological observations?

Why is the electroweak interaction so much stronger than gravity?

- Are there new particles close to the mass of the Higgs boson?
- Is the Higgs boson elementary or made of other particles?
- Are there anomalies in the interactions of the Higgs with the W and Z?

Why is there more matter than antimatter in the universe?

- Are there charge-parity violating Higgs decays?
- Are there anomalies in the Higgs self-coupling that would imply a strong firstorder early-universe electroweak phase transition?
- Are there multiple Higgs sectors?

G.P. Salam, L.-T. Wang, G. Zanderighi, Nature 607 (2022) 7917

J. de Blas et al., (Azzi, Farry, Nason, Tricoli, Zeppenfeld Eds.)

CERN-LPCC-2018-03, arXiv:1902.04070

not including the latest CDF M_W measurement

Prospects for HL-LHC: Higgs and global analysis

- few % uncertainty for signal strengths
- foreseen th. uncertainty dominant

in the SMEFT approach

J. de Blas et al., (Azzi, Farry, Nason, Tricoli,

Zeppenfeld Eds.) arXiv:1902.04070

F. Piccinini (INFN)

With no clearcut compelling direction for an extension of the SM, a future machine with very broad physics potential is necessary to advance our knowledge

FCC is an ideal machine allowing to investigate at a never explored level both the intensity and the energy frontier

in the following some considerations on the first stage, FCC-ee

revisit LEP physics with much larger statistics

- at Z pole (~ 0.1% at LEP1)
- at WW threshold (~ 1% at LEP2)

- explore for the first time at a leptonic collider
 - *ZH* threshold
 - $t\bar{t}$ threshold

Cross sections and event numbers

G. Bernardi et al., arXiv:2203.06520[hep-ex]

- Z-pole, 3 points: $5 \times 10^{12} Z$
- *WW* threshold, 2 points: 10⁸ *W* pairs
- *HZ* threshold: $10^6 HZ$ + $2.5 \times 10^4 WW \rightarrow H$
- $t\bar{t}$ threshold, 3 points: $10^6 t\bar{t} + 2 \times 10^5 HZ$ $+5 \times 10^4 WW \rightarrow H$

Higgs@FCCee

P. Azzurri et al., arXiv:2106.15438

key feature: model-independent measurement of g_{HZZ}

F. Piccinini (INFN)

Collider	HL-LHC	$FCC-ee_{240\rightarrow 365}$	FCC-ee	FCC-INT	FCC-INT
			+ HL-LHC		+ HL-LHC
Int. Lumi (ab^{-1})	3	5 + 0.2 + 1.5	-	30	-
Years	10	3 + 1 + 4	-	25	-
$g_{\rm HZZ}$ (%)	1.5	0.18	0.17	0.17	0.16
$g_{\rm HWW}$ (%)	1.7	0.44	0.41	0.20	0.19
$g_{\rm Hbb}~(\%)$	5.1	0.69	0.64	0.48	0.48
$g_{\rm Hcc}$ (%)	SM	1.3	1.3	0.96	0.96
g_{Hgg} (%)	2.5	1.0	0.89	0.52	0.5
$g_{\mathrm{H}\tau\tau}$ (%)	1.9	0.74	0.66	0.49	0.46
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9	3.9	0.43	0.43
$g_{\rm H\gamma\gamma}$ (%)	1.8	3.9	1.3	0.32	0.32
$g_{\mathrm{HZ}\gamma}$ (%)	11.	_	10.	0.71	0.7
$g_{\rm Htt}$ (%)	3.4	-	3.1	1.0	0.95
$g_{\rm HHH}$ (%)	50.	44.	33.	3-4	3-4
$\Gamma_{\rm H}$ (%)	SM	1.1	1.1	0.91	0.91

G. Bernardi et al., arXiv:2203.06520[hep-ex]

Observable	Present	FCC-ee	FCC-ee	Comment and dominant exp. error
	value \pm error	Stat.	Syst.	
$m_{\rm Z} ~({\rm keV})$	$91,186,700\pm 2200$	4	100	From Z lineshape scan; beam energy calibration
Γ_Z (keV)	$2,495,200 \pm 2300$	4	25	From Z lineshape scan; beam energy calibration
R_{ℓ}^{Z} (×10 ³)	$20,767 \pm 25$	0.06	0.2 - 1.0	Ratio of hadrons to leptons; acceptance for letpons
$\alpha_{S}(m_{Z}^{2})$ (×10 ⁴)	$1,196 \pm 30$	0.1	0.4 - 1.6	From $R_{\ell}^{\mathbb{Z}}$ above
$R_b \ (\times 10^6)$	$216,290 \pm 660$	0.3	< 60	Ratio of $b\overline{b}$ to hadrons; stat. extrapol. from SLD
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	$41,541 \pm 37$	0.1	4	Peak hadronic cross section; luminosity measurement
N_{ν} (×10 ³)	$2,996 \pm 7$	0.005	1	Z peak cross sections; luminosity measurement
$sin^2 \theta_W^{eff}$ (×10 ⁶)	$231,480\pm160$	1.4	1.4	From $A_{FB}^{\mu\mu}$ at Z peak; beam energy calibration
$1/\alpha_{QED}(m_Z^2)$ (×10 ³)	$128,952\pm14$	3.8	1.2	From $A_{FB}^{\mu\mu}$ off peak
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1.3	b-quark asymmetry at Z pole; from jet charge
$A_{e} (\times 10^{4})$	$1,498\pm49$	0.07	0.2	from $A_{FB}^{\text{pol},\tau}$; systematics from non- τ backgrounds
m_W (MeV)	$80,350 \pm 15$	0.25	0.3	From WW threshold scan; beam energy calibration
Γ_W (MeV)	$2,085 \pm 42$	1.2	0.3	From WW threshold scan; beam energy calibration
N_{ν} (×10 ³)	$2,920 \pm 50$	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
$\alpha_S(m_W^2)$ (×10 ⁴)	$1,170\pm420$	3	Small	From R^W_ℓ

G. Bernardi et al., arXiv:2203.06520[hep-ex]

Global EW fit@FCC-ee

• through oblique *S*, *T*, *U* parameters

• in the SMEFT approach

G. Bernardi et al., arXiv:2203.06520[hep-ex]

Two directions for theoretical studies towards FCC

analysis of presently conceivable and/or new scenarios of BSM physics

- study of potential FCC sensitivity to new heavy degrees of freedom through EFT approaches
- investigation of light new degrees of freedom through classes of models

 \implies this will be discussed within the Theory session of tomorrow

		Flavour anomalies	Aoife Bharucha
Models of Composite Higgs at FCG		Room 2	11:15 - 11:40
Aldo Deandrea et al.		Axion-like particles Dr Jérémie	at FCC
Room 2	09:15 - 09:40	Quevillon	
Dark Matter: status and FCC Dario Buttazzo.	prospect at	Room 2	11:40 - 12:05
		Light composite sca	alars at FCC-ee
Status and prospects o Mark Goodsell	fSUSY	and FCC-hh Leonard Schwarze et al.	
Room 2	10:15 - 10:40	Discussion / potenti	al synergies
Piccinini (INFN)	Joint FCC-Fra	ance & Italy 2022	November 21, 2

Two directions for theoretical studies towards FCC

 development of theoretical calculations necessary to satisfy the unprecedented precision requirements of FCC

 \implies some example concerning FCC-ee in the following slides

Challenges for theory: an example, Z pole

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

FCC-ee will require pushing th. uncertainty down by at least a factor of 10 on cross sections and even more on A_{FB} w.r.t LEP What changed from LEP era in the field of theory predictions?

F. Piccinini (INFN)

Impressive development during LHC era

Impressive development during LHC era

reality: automatic codes for event generation at NLO (QCD and EW) precision matched to all order resummation of logarithmic enhanced corrections

- $2 \rightarrow 2$ @NNLO QCD perturbative accuracy for all processes
- $2 \rightarrow 3 @\mathsf{NNLO} \ \mathsf{QCD} \ \mathsf{accuracy} \ \mathsf{becoming} \ \mathsf{available} \ \mathsf{for} \ \mathsf{selected} \ \mathsf{processes}$
- N3LO QCD calculations for Higgs and DY production
- different approaches for matching NNLO calculation and resummation of logs

Impressive development during LHC era

reality: automatic codes for event generation at NLO (QCD and EW) precision matched to all order resummation of logarithmic enhanced corrections

 $2 \rightarrow 2$ @NNLO QCD perturbative accuracy for all processes

 $2 \rightarrow 3 @\mathsf{NNLO} \ \mathsf{QCD} \ \mathsf{accuracy} \ \mathsf{becoming} \ \mathsf{available} \ \mathsf{for} \ \mathsf{selected} \ \mathsf{processes}$

N3LO QCD calculations for Higgs and DY production

different approaches for matching NNLO calculation and resummation of logs

not enough for FCC-ee

• Workshop "Precision calculations for future e^+e^- colliders: targets and tools", CERN, 7-17 June 2022

https://indico.cern.ch/event/1140580/

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision), together with a sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)
- some progress already achieved and future paths identified

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision), together with a sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)
- some progress already achieved and future paths identified

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- at least complete NNLO accuracy in $e^+e^- \rightarrow f\bar{f}$
- expansion of the amplitude for $e^+e^-\to f\bar{f}$ around the complex pole $s_0=M_Z^2-i\Gamma_Z M_Z$

$$\mathcal{M} = \frac{R}{s - s_0} + S + S'(s - s_0)$$

$$R \rightarrow \text{known@NNLO} + \text{leading higher orders}$$

$$S \rightarrow \text{known@NLO}$$

$$S' \rightarrow \text{known@(N)LO}$$

• EWPO extraction: $\rightarrow Z f \bar{f}$ vertex at N3LO and leading N4LO

A. Freitas

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision), together with a sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)
- some progress already achieved and future paths identified

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- at least complete NNLO accuracy in $e^+e^- \rightarrow f\bar{f}$
- expansion of the amplitude for $e^+e^-\to f\bar{f}$ around the complex pole $s_0=M_Z^2-i\Gamma_Z M_Z$

$$\mathcal{M} = \frac{R}{s - s_0} + S + S'(s - s_0)$$

$$R \rightarrow \text{known@NNLO} + \text{leading higher orders}$$

$$S \rightarrow \text{known@NLO}$$

$$S' \rightarrow \text{known@(N)LO}$$

• EWPO extraction: $\rightarrow Z f \bar{f}$ vertex at N3LO and leading N4LO

A. Freitas

• The above two items are beyond present knowledge

- improved description of ISR QED radiation and IF interference (non-factorizable effects larger than the required precision, contrary to LEP precision), together with a sensible procedure for extracting EWPO in presence of higher order corrections (beyond one loop)
- some progress already achieved and future paths identified

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

- at least complete NNLO accuracy in $e^+e^- \to f\bar{f}$
- expansion of the amplitude for $e^+e^-\to f\bar{f}$ around the complex pole $s_0=M_Z^2-i\Gamma_Z M_Z$

$$M = \frac{R}{s - s_0} + S + S'(s - s_0)$$

$$R \rightarrow \text{ known@NNLO + leading higher orders}$$

$$S \rightarrow \text{ known@NLO}$$

$$S' \rightarrow \text{ known@(N)LO}$$

• EWPO extraction: $\rightarrow Z f \bar{f}$ vertex at N3LO and leading N4LO

A. Freitas

- The above two items are beyond present knowledge
- progress needed on the study of the mathematical structure of scattering amplitudes
- as well as seminumerical approaches to Feynman diagram

F. Piccinini (INFN)

- Also new MC generators will be necessary to keep under control the theoretical precision at the few 10^{-5} level
 - through matching between fixed order perturbative corrections and (exclusive) resummation
 - different groups already started, e.g. MG5_aMC@NLO, Whizard, Sherpa, Herwig7, Pythia8, KKmc, BhLumi, BabaYaga

- Also new MC generators will be necessary to keep under control the theoretical precision at the few 10^{-5} level
 - through matching between fixed order perturbative corrections and (exclusive) resummation
 - different groups already started, e.g. MG5_aMC@NLO, Whizard, Sherpa, Herwig7, Pythia8, KKmc, BhLumi, BabaYaga

• Luminosity requires control of QED corrections (and had vacuum polarization) for Bhabha scattering with one order of magnitude better than for LEP $\sim 0.06\%$ (recently revisited at $\sim 0.04\%$)

P. Janot and S. Jadach, arXiv:1912.02067

- beam-beam interaction effects have to be considered
 - e.g. tiny shift on luminosity ($\sim 0.05\%$) which contributes to remove the LEP tension in the number of light neutrinos

 $N_{\nu} = 2.9840 \pm 0.0082 \implies N_{\nu} = 2.9963 \pm 0.0074$

P. Janot and S. Jadach, arXiv:1912.02067; Voutsinas, Perez, Dam, Janot, arXiv:1908.01704

F. Piccinini (INFN)

- for hadronic final states ($\to A^0_{FB},\,\alpha_s(Q^2)$ from event shape variables, $\tau^+\tau^-)$
 - parton shower precision, non perturbative QCD corrections
 - quark and gluon fragmentation
 - jet substructure

P. Nason, D. D'Enterria, G. Soyez

otherwise the perturbative precision would be spoiled

- for hadronic final states ($\rightarrow A_{FB}^0, \alpha_s(Q^2)$ from event shape variables, $\tau^+\tau^-$)
 - parton shower precision, non perturbative QCD corrections
 - quark and gluon fragmentation
 - jet substructure

P. Nason, D. D'Enterria, G. Soyez

otherwise the perturbative precision would be spoiled

- Improvements in QED corrections crucial also for Flavour physics
 - two rare decays $B^0 \to K^* \tau^+ \tau^-$ and $B^+ \to \pi \tau^+ \nu_{\tau}$ (n.a. at LHC and BELLEII) will allow to perform strong checks of LFU
 - while QCD effects cancel in the ratio of BRs, QED do not (because of the different leptonic masses)
 - Workshop "FCC Flavour Physics Programme", CERN, 12-13 Sept. 2022

https://indico.cern.ch/event/1186057

Another example, WW threshold: $e^+e^- ightarrow 4$ fermions

- first NLO exact calculation completed in 2005 for $WW \rightarrow 4f$
 - th. accuracy $\lesssim 1\%$ A. Denner et al., PLB612 (2005) 223; NPB 724 (2005) 247
- at present $e^+e^- \rightarrow 4f$ cross sections @NLO accuracy can be calculated with automated tools
- NNLO enhanced contributions because of Coulomb photon effects calculated by means of EFT methods

M. Beneke et al., NPB 792 (2008) 89; S. Actis et al., NPB807 (2009) 1

• th. accuracy $\sim 0.5\%$ $\Delta M_W \sim 3 \text{ MeV}$

WW threshold: future prospects

- Having in mind a target precision $\Delta M_W \sim 1$ MeV we would need
 - an improved treatment of EFT, which requires
 - NNLO corrections to $e^+e^- \rightarrow WW$ in NWA
 - NNLO accuracy in the W decay
 - improved treatment of ISR including the partonic structure of the electron up to NLL

S. Frixione, Bertone, Cacciari, Stagnitto, Zaro, Zhao

$t\bar{t}$ threshold (from M. Beneke)

- I $e^+e^- \rightarrow t\bar{t}X$ cross section near threshold now computed at NNNLO in (PNR)QCD + top-Yukawa effects
 - Sizeable 3rd order corrections and reduction of theoretical uncertainty to about ±3%.
- II Realistic predictions for $e^+e^- \rightarrow W^+W^-b\bar{b}$ near top-pair threshold
 - NNLO available, including cuts invariant mass cuts.
- III Parameter dependences $(m_t, \Gamma_t, y_t, \alpha_s)$ can be studied.
 - (m_t, Γ_t) with unrivaled accuracy.
 - yt with 20% accuracy from threshold already challenging.
- IV Further requirements:
 - ISR / QED PDF's for $x \rightarrow 1$ with NLL evolution
 - N4LO QCD would be reassuring, but appears prohibitive.

https://www.hepforge.org/downloads/qqbarthreshold/

M. Beneke (TU München)		CERN, 08 June 2022	25 / 25
E Piccinini (INEN)	Joint ECC-France & Italy 2022	November 21, 202	2 35/

36

Summary and outlook

FCC colliders necessary to improve our knowledge of Nature

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches
 - See Theory section tomorrow!

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches
 - See Theory section tomorrow!
- FCC-ee needs a very big jump in the accuracy of theoretical predictions

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches
 - See Theory section tomorrow!
- FCC-ee needs a very big jump in the accuracy of theoretical predictions
 - according to LEP and LHC experience, we had an enormous progress in the calculation techniques and development of new Monte Carlo generators, but

progress requires coherent efforts in a long range in order to avoid as much as possible the systematics being dominated by theoretical uncertainty