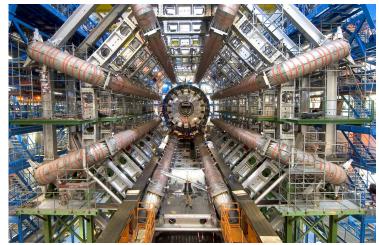
Noble liquid calorimetry for FCC-ee

Nicolas Morange, IJCLab

FCC France-Italy workshop, Lyon, 22/11/2022

Laboratoire de Physique des 2 Infinis

Introduction: noble liquid calorimeters


- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr
- An appealing option for FCC-ee
 - Good energy resolution
 - High(-ish) granularity achievable
 - Linearity, uniformity, long-term stability

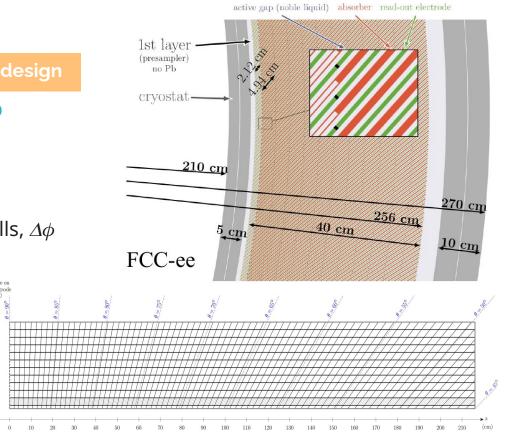
Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X₀
 - Designing for improved energy resolution

• Significant progress in the past year

General design: geometry

Design driven by readout electrodes


Baseline (conservative) FCCee ECAL barrel design

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps
- 40cm deep (22 X_o)
- $\Delta \theta$ = 10 (2.5) mrad for regular (strip) cells, $\Delta \phi$ = 8 mrad.

12 longitudinal layers

- Solid aluminum cryostat
- Implemented in FCC Fullsim

Lots of room for optimization and improvements

56.5 51.6 46.6 41.7 242-31.8 238.5-26.8 235 -

2.1-216

231.5 -21.9-228-16.9-224.5 12-221 -7.1-217.5+

Optimizing the energy resolution

Materials

- LAr \rightarrow LKr: • 8%/ \sqrt{E} to 5%/ \sqrt{E}
- $Pb \rightarrow W$:
 - No improvement in resolution
 - Expected impact on PID to be studied

Energy Resolution CorrectedCaloClusters

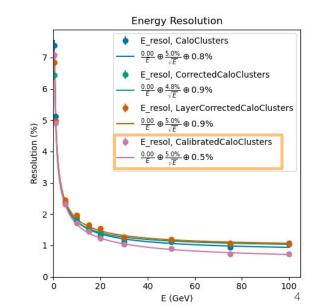
1.8mm Pb, LAr $\frac{0.00}{E} \oplus \frac{7.3\%}{\sqrt{E}} \oplus 0.9\%$ 10 1.8mm Pb, LKr 0.00 ⊕ 6.8% ⊕ 0.4% 8 1.35mm Pb, LKr $\frac{0.00}{F} \oplus \frac{5.2\%}{F} \oplus 1.1\%$ Resolution (%) 1.35mm W, LKr 0.00 F ⊕ 7.5% ⊕ 0.2% 1.0mm W, LKr $\frac{0.00}{F} \oplus \frac{6.0\%}{F} \oplus 0.6\%$ 2 20 80 100 40 60 E (GeV) N. Morange Walland

Geometry

- Straight planes → trapezoidal absorbers
 - Better sampling fraction in first layers
 - Small gain in resolution

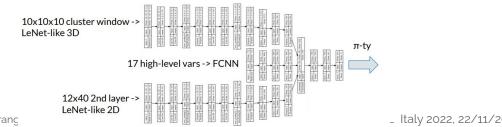
glue

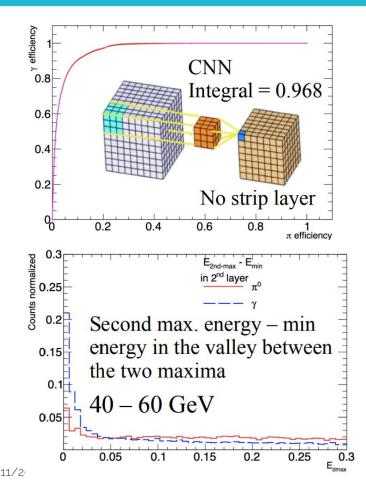
Pb


steel

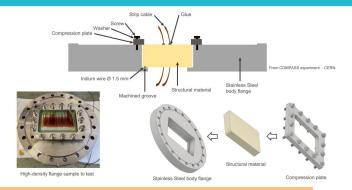
FCC France-Italy 2022, 22/11/2022

• Feasibility ?

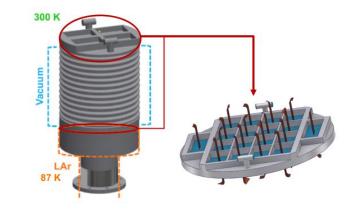

- MVA calibration
 - improves constant term
- Clustering
 - Large effect, to be studied further



Estimating PID performance


Benchmark for ECAL: π°/γ separation

- Use of PCB as readout electrode
 ⇒ large flexibility on granularity
- Many cells: use of ML techniques for improved performance
 - Based on shower shapes and on raw cells energies
 - Investigate CNN and DNN
 - Investigate role of "strips" layer
- Very promising results !
 - \sim 95% γ efficiency for 10% π^0
- Next is use of GNN
 - Probably better suited for our use-case



High density feedthroughs

vpe: Displacement

Signal extraction from cryostat

- High density feedthroughs needed in case readout electronics outside of cryostat
- Aim for ~ ×5 density and ~ ×2 area wrt ATLAS

Successful R&D on connector-less feedthrounds at CERN

- Prototypes of 3D-printed epoxy resins structures with slits for strip cables, glued to the flange Leak tests and pressure tests at 300 K and 77 K Suitable materials identified: G10 structure with slits +
- **indium seal + Epo-Tek glued Kapton strip cables** Stress simulations of complete designs at 300 K and 77 K

Next generation cryostats

Minimizing dead material in front of calo

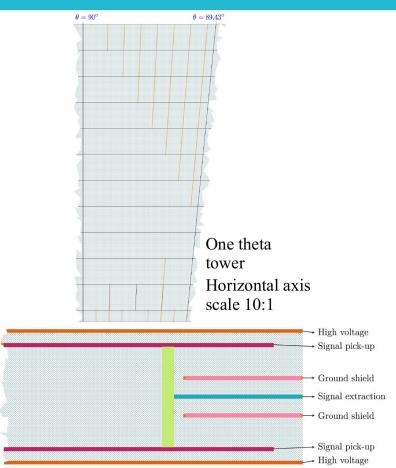
- Crucial for low energy measurements at FCCee
- Ongoing R&D for cryostats using new materials and sandwiches
 - Generic R&D at CERN as cryos will be used for solenoids in all experiments
 - Synergy with progress in aerospace
 - Test microcrack resistance, sealing methods, leak and pressure tests
 - Address CFRP/Metal interfaces
- Promises for "transparent" cryostats: few % of X₀ !

Sandwich Shell Skin [0,45,-45,90]s Core : Al Honeycomb Skin [0,45,-45,90]s Solid						Radiation length X ₀ [mm] AI = 88.9 HM CFRP = 260 Shell Honeycomb AI= 6000			
Criteria: Safety Factor = 2	Sandwich shell			Solid shell					
	HM CFRP		Al		HM CFRP		Al		
	owc	ICC	owc	ICC	owc	ICC	OWC	ICC	
Material budget X/Xo	0.03	0.043	0.094	0.17	0.092	0.12	0.34	0.44	
Xo % savings	-68%	-75%	REF	REF	-2%	-29%	262%	159%	
Skin Th. [mm]	3.2	4.8	3.9	7.5					
Core Th. [mm]	32	38	40	40					
Total Th. [mm]	38.4	47.6	47.8	55	24	30.4	30	39	
Thickness % savings	-20%	-13%	REF	REF	-50%	-45%	-37%	-29%	

NASA's lineless cryotank

Sealing with Belleville washers

N. Morange (IJCLab)


High granularity electrodes

Aiming for ~ ***10** ATLAS granularity

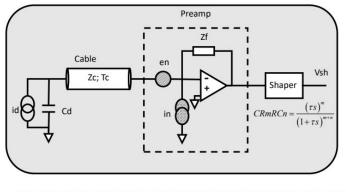
- High granularity required for better PFlow performance (few million cells)
- >6 compartments to compensate LAr gap widening

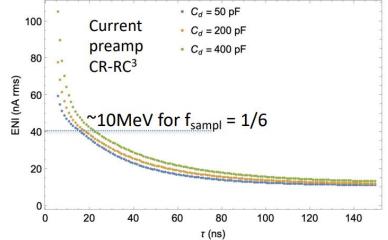
Implementation: multi-layer PCBs

- 7-layer PCB
 - Signal collection on **readout planes**
 - Transmission through via
 - Signal extraction on trace
 - **Ground shields** to mitigate cross-talk
- Challenges
 - Trade-off capacitance (noise) / cross-talk
 - Maximum density of signal traces ?
- Studies on simulations and prototypes

Noise and cross-talk considerations

Goals

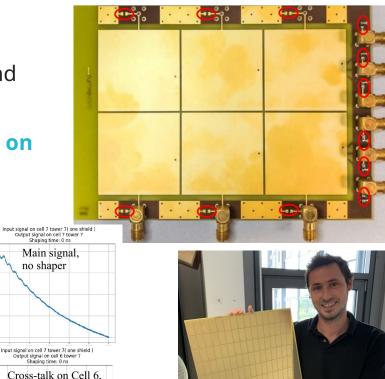

- Low noise to measure photons down to 200 MeV
- Measure MIPs with good S/N
- Sub-percent cross-talk


Performance estimation

- Performance depends on electrodes and transmission line properties, and on choices made for readout electronics
- Cell capacitances computed using FEM tools (ANSYS)
- Electronics noise from analytical description of readout
- Cross-talk from FEM calculations (Cadence Sigrity or ANSYS HFSS)

Results

- Long (200 ns) shaping times help a lot
- Suitably low noise and cross-talk achievable


Readout electrodes prototypes

Small scale electrode @ IJCLab

- Detailed measurements of cell properties and cross-talk effects
- Frequency behaviour
- Good overall agreement with simulations on large frequency range

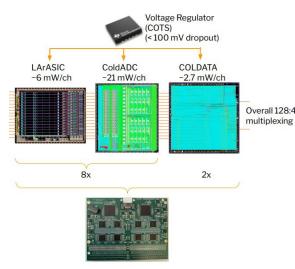
Larger scale electrode @ CERN

- 1:1 scale θ chunk: 16 towers with different layouts
- Simple electrical tests with scope and software shaper
- Sub-percent cross-talk easily achievable with > 50 ns shaping

no shaper

Cold electronics?

Noise master formula:

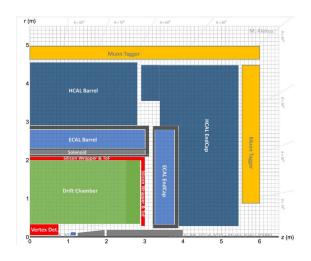


- Cold electronics: gain on C_{d} , T and g_{m}
- Extremely low noise easily achievable

$C_{cable} = rac{ au_{delay}}{Z_c}$	ENC (keV)	Peaking time = 500 ns			
Warm electronics L = 5 m C _{cable} = 500 pF / 1 nF	Cd = 100pF - 50/25 Ω	1400 / 2500			
	Cd = 200pF – 50/25 Ω	1600 / 2800			
	Cd = 400pF – 50/25 Ω	2100 / 3200			
	Cd = 800pF - 50/25 Ω	2900 / 4100			
Cold electronics L=10 cm C _{cable} = 10 pF / 20 pF	Cd = 100pF – 50/25 Ω	140 / 150			
	Cd = 200pF - 50/25 Ω	250 / 260			
	Cd = 400pF – 50/25 Ω	470 / 470			
	Cd = 800pF - 50/25 Ω	910 / 910			

How?

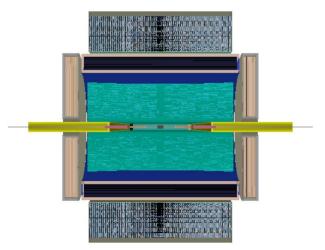
- **Challenges:**
 - Heat dissipation
 - Difficulty for repair
- We know how to do it:
 - DUNE example
- Very first studies
 - HGCROC in Liquid N at IJCLab
 - Check behaviour of analogue and digital parts



More than the ECAL barrel

Towards a detector concept

- Based on IDEA design but using Noble Liquid for ECAL
- Performance impact of position of solenoid to be studied in simulation



Implementation in FCCee Fullsim

- ECAL endcaps
 - Parallel disks, 1.5mm Pb, 2mm LAr gaps
 - Total thickness 45cm

• HCAL barrel

- Based on Iron-Scint Tile design for FCChh
- 13 compartments, $\Delta \theta \times \Delta \phi = 0.025 \times 0.025$
- Cryostat: more realistic implementation

Conclusions

- Significant progress in the past year on Noble Liquid calorimetry for FCC-ee
 - EM resolution and PID optimization in simulation studies
 - Cryostat and feedthroughs R&D
 - Measurements of electrode prototypes
- Very fruitful GranuLAr workshop at IJCLab
 - Welcoming new and prospective collaborators
- Prospects for next year
 - Whole concept in fullsim + Pandora PFA in FCCee
 software ⇒ first look at hadron performance
 - Further EM performance studies
 - Start of **R&D on absorbers**

