

$B_s^0 \rightarrow D_s K$ benchmark with IDEA

Tools and first results

G Mezzadri, Marco Scodeggio – INFN Ferrara, and Federica Cuna – INFN Lecce and Uni Salento gmezzadr@fe.infn.it

Italy-France FCC workshop - 22/11/2022 - Lyon

Flavor Physics at FCC-ee

CKM unitarity triangle is a stepping stone for flavor physics

- Any deviation from unitarity would lead to physics beyond standard model
- At the end of HL-LHC and Belle2 programs, γ angle will be known with ~1° error

FCC-ee will be a Tera-Z factory

- CKM analyses can be performed by studying $Z \rightarrow b\bar{b}$
- This will result in:
 - 75 Billions B₀,
 - 310 Billions B⁰

This work aims to understand the feasibilty of

- 1. $B_{s}^{0} \rightarrow D_{s}K$
- 2. $B_s^0 \rightarrow J/\psi \Phi$ (later)

With the B_s sample, **FCC can measure**:

- γ with a precision of 0.4°
- β_s with a precision of $(3.4x10^{-2})^\circ$

Our guiding light

arXiv: 2107.02002

There is a study by R. Aleksan, L. Oliver, and E. Perez showing the possibility of doing B_{ς} physics and measure unitary triangles at FCC-ee

In the paper, they implement a generic FCC-ee detector (see backup).

Flavor Physics with IDEA

This work makes use of fast and full simulations of **IDEA detector**:

- to establish impact of tracking and
 PID and guide further development
- To test the tools for doing physics analyses
- to estimate the **sensitivity** of
 - $\varphi = \gamma_{CKM} + \gamma_{ds} 2\beta_s$ with $B_s \to DK$
 - $2\beta_s$ with $B_s \rightarrow J/\psi \Phi$

Delphes is a **modular framework** that simulates the **response** of a multipurpose **detector** in parametrized fashion

It includes main feaures:

- Charged particles propagation
- EM/Had calorimeters
- Particle flow

It provides:

- Lepton, photons, neutral hadrons
- Jets missing energy

It has been originally designed for hadronic environment but it is well suited also for e⁺e⁻ studies, including **IDEA detector cards**

Fast Tracking

From M. Selvaggi: https://indico.desy.de/event/33640/ contributions/128007/attachments/ 77587/100359/delphes ecfa2022.pdf

Track Smearing

- Simple tracker geometry implementation, including material
- Computes full covariance matrix (in present Delphes we have "diagonal" smearing in the 5 tracking parameters)
- Can be used for studying impact of material and realistic HF tagging simulation

FCCee TrackCovariance

 Z_0 (μ m)

TrackCovariance module

- Requires:
 - Geometry input
 - cylinder coaxial
 - planar disks
 - Magnetic field

From M. Selvaggi:

https://indico.desy.de/event/33640/contributions/128007/7 attachments/77587/100359/delphes_ecfa2022.pdf

$$B_s \rightarrow D_s K$$

- Final state of interest is $D_s \to \Phi \pi + \text{bachelor K}$, with $\Phi \to \text{KK}$.
- Generated 10k events at Z peak, exclusive $Z \rightarrow bb$.
 - One b hadronizes in B_s, the other goes inclusively
 - Winter '21 DELPHES simulation.
- In order to study the impact, two approaches:
 - 1) Truth-matching (TM)
 - 2) Reconstruction

```
1.000 MyD_s- K+ PHSP;
Enddecay
CDecay anti-B_s0
Decay MyD_s-
  1.000 Myphi pi- PHSP;
Enddecay
CDecay MyD_s+
Decay Myphi
      1.000 K+ K- VSS;
Enddecay
End
```

Decay B_s0

Generated also main backgrounds and tested with the reconstruction routines

Results with TM - D

Apply few general selections

- $Q_{tot} = 0$
- N_K ≥ 3
- $N_{\pi} \ge 1$
- $Q_{KK} = 0$

Φ and **prompt Kaons** are already **separated**

To reconstruct D_s , apply **vertex fit** to $KK\pi$ tracks

PID is 100% via PDG-ID

Results with TM - B

To reconstruct B, vertex fit of D, and bachelor K

• will study the ${\rm B}_{\rm s}$ impact parameter with covariance matrix already in DELPHES

Result with Reconstruction

Apply few general selections

- $Q_{tot} = 0$
- N_k ≥ 3
- N_π ≥ 1
- $Q_{KK} = 0$

Vertexing allows to separate Φ and prompt kaons

PID is 100% via PDG-ID

Result with Reconstruction – D_s and B_s

By applying a similar procedure as in the TM case, we identify D_s and B_s candidates. We add a loose selection on D_s candidates mass 1.9 GeV/c² < mass($\Phi\pi$) < 2 GeV/c²

About PID

IDEA will use innovative dN/dx cluster counting technique for PID in the Drift chamber

This grants an improved PID with respect to conventional dE/dx

Possibility to add timing layer to improve in (0.85, 1.05) GeV/c region

Implementation in simulation

```
_____
# Cluster Counting
***************
module ClusterCounting ClusterCounting {
  add InputArray TrackSmearing/tracks
  set OutputArray tracks
  set Bz $B
  ## check that these are consistent with DCHCANI/DCHNANO parameters in TrackCovariance module
  set Rmax $DCHRMAX
  set Zmin $DCHZMIN
  set Zmax $DCHZMAX
  # gas mix option:
  # 0: Helium 90% - Isobutane 10%
  # 1: Helium 100%
  # 2: Argon 50% - Ethane 50%
  # 3: Argon 100%
  set GasOption 0
```

Cluster counting is implemeted in DELPHES with GARFIELD parametrization for $\beta\gamma$ dependence

To be tested in the future on this benchmark

Main backgrounds

500k events generated and analysed with the same routines

Main mode	Decay chain	Background	Decay chain
		mode	
$B_s \to D_s^{\pm} K^{\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$	$B_s \to D_s^{*\pm} K^{\mp}$	$D_S^{*\pm} \rightarrow \gamma \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
<i>"</i>	$D_s^{\pm} \rightarrow \phi \rho^{\pm}$, $\phi \rightarrow K^+K^-$	u u	$D_c^{*\pm} \rightarrow \nu \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$B_s \rightarrow D_s^{\pm} K^{*\mp}$	$D_s^{\pm} \to \phi \pi^{\pm}, \phi \to K^+ K^-, K^{*\mp} \to K^{\mp} \pi^0$
		u u	$D^{\pm} \rightarrow \phi o^{\pm} \phi \rightarrow K^{+}K^{-} o^{\pm} \rightarrow \pi^{\pm}\pi^{0} K^{*\mp} \rightarrow K^{\mp}\pi^{0}$
		$B_s \rightarrow D_s^{\pm} \pi^{\mp}$	$D_s^{\pm} \to \phi \pi^{\pm}, \phi \to K^+ K^-$
			$ D_s^{\perp} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^{+}K^{-}, \rho^{\pm} \rightarrow \pi^{\pm}\pi^{0}$
		$B_s \rightarrow D_s^{\pm} \rho^{\mp}$	$D_S^{\pm} \to \phi \pi^{\pm}, \phi \to K^+ K^-, \rho^{\mp} \to \pi^{\mp} \pi^0$
		$B^0 \rightarrow D_s^{\pm} K^{\mp}$	$D_S^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_S^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$\Lambda_b^0 \rightarrow D_s^- p^+$	$D_S^{\pm} o \phi \pi^{\pm}$, $\phi o K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$\Lambda_b^0 o D_s^{*-} p^+$	$D_s^{\pm} \rightarrow \gamma \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_s^{\pm} \rightarrow \gamma \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$

Background results

Largest contribution from:

- $B_s \rightarrow D_s \pi$
- $B_s \rightarrow D_s \rho$

Mainly from combinatorial

Negligible for other cases

Summary and next steps - I

- First fast simulation of $B_s \to D_s$ K benchmark for flavor physics prepared
 - Tools tested and ready for more complex analyses
 - A new version of vertexing is now available to ease the analysis job
- With a preliminary analysis on B_s → D_s K:
 - Good reconstruction of B_s candidate mass with vertexing with covariance matrix
 - Combinatorial background from 2 B_s decays with larger branching ratio
 - Further development are undergoing to further suppress those contributions (hemisphere selection, impact parameters)

Summary and next steps - II

- Add a more realistic PID
 - Cluster counting implemented in DELPHES
- Reproduce results of arXiv: 2107.02002 with EDM4HEP
 - First with DELPHES, later with full simulation, thanks to EDM4HEP
 - Study also final states with neutrals → impact of calorimeters (see backup)

THANKS

ADDITIONAL MATERIAL

Unitary triangles

$$UT_{db} \equiv V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

$$UT_{sb} \equiv V_{ub}^* V_{us} + V_{cb}^* V_{cs} + V_{tb}^* V_{ts} = 0$$

$$UT_{ds} \equiv V_{us}^* V_{ud} + V_{cs}^* V_{cd} + V_{ts}^* V_{td} = 0$$

"Conventional" Unitarity triangle

"Flat" Unitarity triangles

Generic Detector

From arXiv: 2107.02002

```
Acceptance:
                                                |\cos \theta|
                                                                    < 0.95
Charged particles:
                                               \frac{\sigma(p_T)}{p_T^2} = 2. \times 10^{-5} \oplus \frac{1.2 \times 10^{-3}}{p_T \sin \theta}
p<sub>T</sub> resolution:
\phi, \theta \text{ resolution}: \qquad \sigma(\phi, \theta) \text{ } \mu \text{rad} = 18 \oplus \frac{1.5 \times 10^3}{p_T \sqrt[3]{\sin \theta}}
Vertex resolution: \sigma(d_{Im}) \mu m = 1.8 \oplus \frac{5.4 \times 10^1}{p_T \sqrt{\sin \theta}}
e, \gamma particles:
                                              \frac{\sigma(E)}{E} = \frac{5 \times 10^{-2}}{\sqrt{E}} \oplus 5 \times 10^{-3}
Energy resolution:
EM \phi, \theta resolution: \sigma(\phi, \theta) mrad = \frac{7}{\sqrt{E}}
```

PID in generic detector

Inclusion of « standard and modest » PID (dE/dx and ToF)

Somewhat conservative PID

Resolution $\sigma\left(\frac{dE}{dx}\right) = 5\%$

Resolution $\sigma(ToF) = 20 \text{ps} \ (\cong 6 \text{mm})$ ToF Detector location : 2m from IP Probability of π misidentification as K with ϵ (K)=50%

Present IDEA guide lines for performance

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+\ell^- X$	Higgs mass, cross section	· Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Hacker	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \to b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p\sin^{3/2}\theta) \ \mu \text{m}$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\% \text{ (GeV)}$

For details about the developments, please refer to the talks in the dedicated parallel sessions and to the presentation of tomorrow by Grancagnolo and Boudry

Why neutrals?

https://indico.cern.ch/event/932973/contributions/4059396/attachments/2141084/3607689/FCCee-week-2020_Bs-DsK.pdf

 D_s final state with neutrals can potentially lead to a **x3 increase** in statistics, i.e. $D_s \rightarrow \Phi \rho^{\pm}$. This puts **more stringent requirements** on **PID** and **Calorimetry**

Result 7 : Excellent calorimetry (Xtal like) is also mandatory

With 10 ps timing layer

Jet Clustering in DELPHES

Jet Clustering

 Implemented Durham inclusive/exclusive clustering in both "dcut" and "njet" mode

· "Valencia" algorithm

```
************************
# Jet finder Durham exclusive
*****************************
module FastJetFinder FastJetFinderDurhamN2 {
# set InputArray Calorimeter/towers
 set InputArray EFlowMerger/eflow
 set OutputArray jets
 # algorithm: 11 ee-durham kT algorithm
 # ref: https://indico.cern.ch/event/1173562/contributions/4929025/a
 # to run exclusive njet mode set NJets to int
 # to run exclusive dcut mode set DCut to float
 # if DCut > 0 will run in dcut mode
 set JetAlgorithm 11
 set ExclusiveClustering true
 set NJets 2
 # set DCut 10.0
```


26

IDEA Calorimetry

Dual readout calorimeter – EM & Hadronic in one single sampling detector

- 1.5 mm fiber pitch
- Cherenkov/Scintillation

Working principle demonstrated by DREAM/RD-52

More details in the presentation in the parallel session on detector