Measurement of hadronic Higgs boson branching ratios at FCC-ee with ZH events at \sqrt{s} =240 GeV

Giovanni Marchiori (APC Paris) Work down with Alexis Maloizel and Paul Guimbard (ENS Paris-Saclay)

> FCC France-Italie workshop 22 November 2022

Introduction

- Goals:
- Analysis main features:
 - Started with Z(II)H, I=e, mu channel at $\sqrt{s}=240$ GeV first
 - Will look at other Z decay channels / \sqrt{s} later
 - Assume an integrated luminosity of 5/ab
 - Only statistical uncertainties are considered
 - FCCAnalysis software; final fit performed with private code based on ROOT/RooFit

• estimate sensitivity of FCC-ee to hadronic branching ratios of Higgs boson (bb / cc / gg) (=> couplings to b/c/g) • compare sensitivity when different assumptions on efficiency/rejection of taggers (or alternative working points) are used

• Reconstruction/selection performed on centrally produced FCCee MC samples (spring2021 production) using

Current analysis status - more details

- Analysis relies on march2022 version of FCCAnalysis for event reconstruction (jet clustering, tagging ...)
 - With some ad-hoc modifications for instance to improve the efficiency of jet truth-flavour labelling
- Analysis was also re-run on privately generated samples to check the impact of using non-isolated leptons
 - collections in the spring2021 production store leptons after an isolation requirement
 - saving in output also lepton collections (AllElectrons, AllMuons) without the isolation requirement

• When performing the analysis, we noticed a 30% efficiency drop due to the fact that the "Electrons" and "Muons"

• Privately generated samples were produced with the same generator and Pythia cards as the official samples, just

• Migration of analysis code to latest FCCAnalysis version and analysis model/scripts (stage1, stage2, ..) recently performed, but analysis not rerun yet (plan is to run directly with improvements such as <u>latest developments on flavour tagging</u>)

Analysis strategy

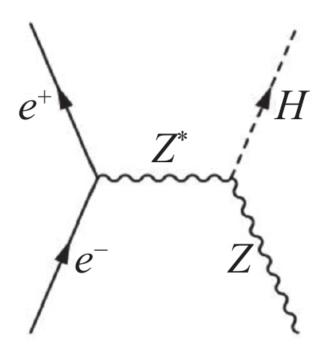
- The measurements proceeds in the following steps:
 - Event reconstruction: leptons, jets and missing energy are reconstructed
 - Event **selection**: events consistent with the signature under study are kept
 - NOTE: no systematic optimisation of the selection criteria has been performed
 - Event categorisation: selected events are classified in categories based on # of b-, c- and g-tagged jets
 - **Fit** for BR measurement:

 - Z(II)H(XX) is known and the system of equations relating the yields to the product σBR can be solved
 - the fit returns σBR

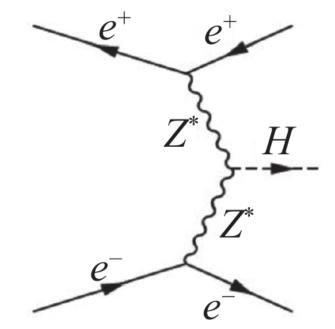
• the signal yield in each category and for each Higgs decay mode (bb, cc, gg, non-hadronic) is extracted through a simultaneous extended maximum likelihood fit to the recoil mass distribution of the various tagging categories

• Assuming tagging efficiencies for each flavour type to be known, the acceptance of each category for the various

• In practice, in the likelihood the yields are expressed directly in terms of products of σBR times the acceptances and


Samples

- Use samples from central production (link)
 - **ZZ**: Pythia8, 60M
 - **WW**: Pythia8, 10M
 - **Ζ/γ*(ee)** [Mee in 30-150 GeV]: Whizard + Pythia6, 79M
 - $Z/\gamma^*(\mu\mu)$: Whizard + Pythia6, 49M
 - **Z(II)H(bb/cc/gg/others)**: Whizard + Pythia6, 1M µµH + 0.9M eeH
- To have more of H(cc) and H(gg), we produced (with the same settings) samples separated by Higgs decay:
 - IIH(bb): 100k IIH(cc): 100k IIH(gg): 100k IIH(other): 500k
- ISR, FSR, beam energy spread are turned on
- The simulated detector is the FCC-ee IDEA one (spring2021 Delphes card)



Samples (cont'd)

Process	sigma (fb)	BR1	BR2	sigma*BR (fb)	Ngen	LumiGen (fb-1)	LumiGen/Lumi
Z(II)H(bb)	201.87	0.067316	0.5824	7.914280728	100000	12635	2.527
Z(II)H(cc)	201.87	0.067316	0.02891	0.3928603294	100000	254543	50.909
Z(II)H(gg)	201.87	0.067316	0.08187	1.112538055	100000	89885	17.977
Z(II)H(nonhad)	201.87	0.067316	0.30682	4.169401808	500000	119921	23.984
ZZ	1358.99	1	1	1358.99	59800000	44003.26713	8.801
ww	16438.5	1	1	16438.5	10000000	608.3280105	0.122
Z/y(ee)	8305	1	1	8305	79400000	9560.505719	1.912
Z/y(mm)	5288	1	1	5288	49400000	9341.906203	1.868

6.76 fb

0.40 fb

Giovanni Marchiori

• Signal xsections are corrected to take into account that whizard samples also include small contribution from ZZ fusion


	sigma*BR (fb)	Ngen	LumiGen (fb-1)	LumiGen/Lumi
llH(bb)	8.150082527	100000	12270	2.454
IIH(cc)	0.4045653947	100000	247179	49.436
llH(gg)	1.145685537	100000	87284	17.457
llH(nonhad)	4.293626925	500000	116452	23.290

Jet reconstruction

- For jet reconstruction, use ee exclusive kt algorithm with N=2, E-recombination scheme
 - neutrinos). Small shift in H(gg) => imperfect clustering of particles in the shower?

• Leads to good invariant mass resolution for Higgs hadronic decays (modulo for heavy flavour decays decaying to

Jet flavour labelling

- so investigated alternative strategies, including recently proposed ghost matching
 - 1: default algorithm in FCC analysis (angular matching to partons, $\Delta \theta = 0.3$, favour b>c>l>g)
 - 2: angular matching to partons, $\Delta \theta = 0.3$, highest-E part
 - 3: angular matching to partons, $\Delta \theta = 0.3$, closest partor
 - 4: angular matching to partons, $\Delta \theta = 0.3$, lowest $\Delta \theta / E$
 - 5: ghost matching to partons
 - 6: ghost matching to hadrons
 - 7: like 2 but use $\Delta \theta = 0.8$
- Evaluated on Z(vv)H(xx) events
 - efficiency defined as number of jets with the correct la over 2*Nevents, for instance:
 - H(bb): 50k evts \rightarrow 100k b-jets \rightarrow eff = N(b-labelled
- Decided to use strategy 7: angular matching to parton highest-E parton

• For jet flavour labelling, have noticed that standard algorithm in FCCAnalysis was not super efficient for all Higgs channels,

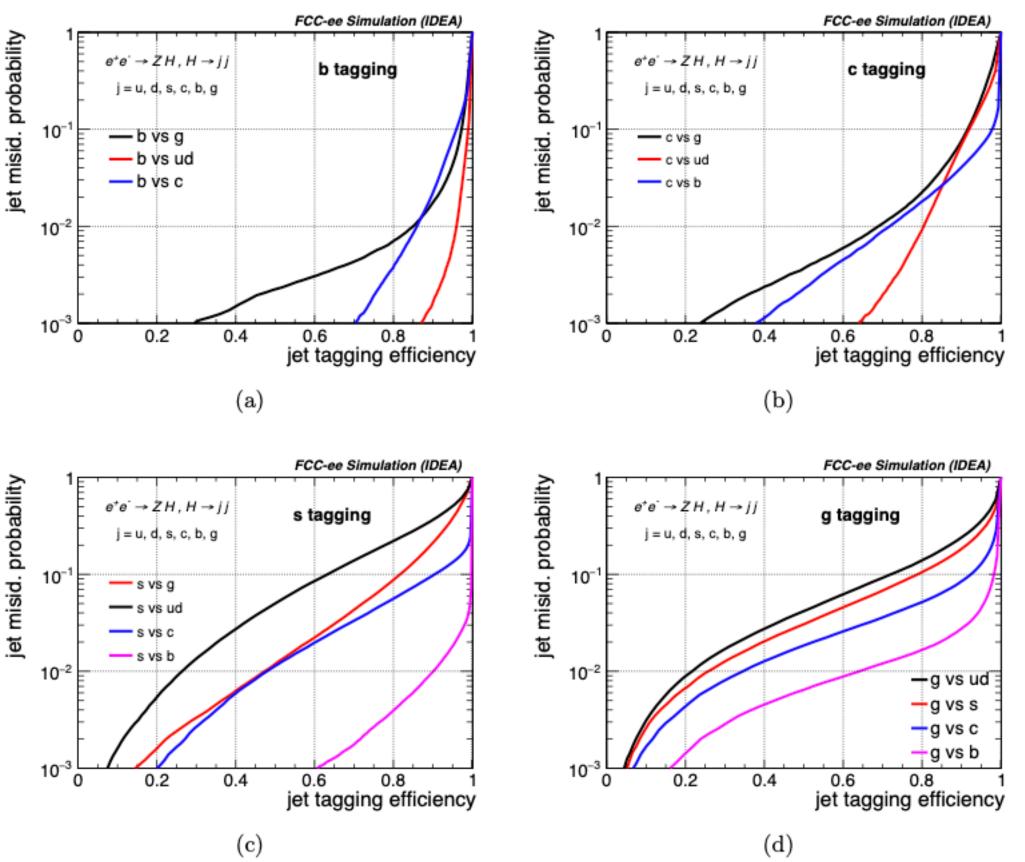
nton	Strategy	εb	ε _c	۶I	εg
	1	95.9	94.4	94.6	75.
	2	95.8	94.4	95.0	92.
	3	93.5	89.2	89.3	88.
	4	95.3	93.6	94.0	90.
abel	5	98.3	38.0	78.8	78.
jets)/100k	6	98.4	98.2	0	0
ns, Δθ=0.8,	7	97.7	97.7	98.0	96.

Jet flavour tagging

• Performance for flavour tagging are taken from <u>note</u> by Franco, Loukas and Michele

Jet Flavour Tagging for Future Colliders with Fast Simulation

Franco Bedeschi^a, Loukas Gouskos^b and Michele Selvaggi^b


^aINFN Sezione di Pisa. Italu ^bCERN, CH-1211 Geneva 23, Switzerland

E-mail: bed@fnal.gov, loukas.gouskos@cern.ch, michele.selvaggi@cern.ch

ABSTRACT: Jet flavour identification algorithms are of paramount importance to maximise the physics potential of future collider experiments. This work describes a novel set of tools allowing for a realistic simulation and reconstruction of particle level observables that are necessary ingredients to jet flavour identification. An algorithm for reconstructing the track parameters and covariance matrix of charged particles for an arbitrary tracking sub-detector geometries has been developed. Additional modules allowing for particle identification using time-of-flight and ionizing energy loss information have been implemented. A jet flavour identification algorithm based on a graph neural network architecture and exploiting all available particle level information has been developed. The impact of different detector design assumptions on the flavour tagging performance is assessed using the FCC-ee IDEA detector prototype.

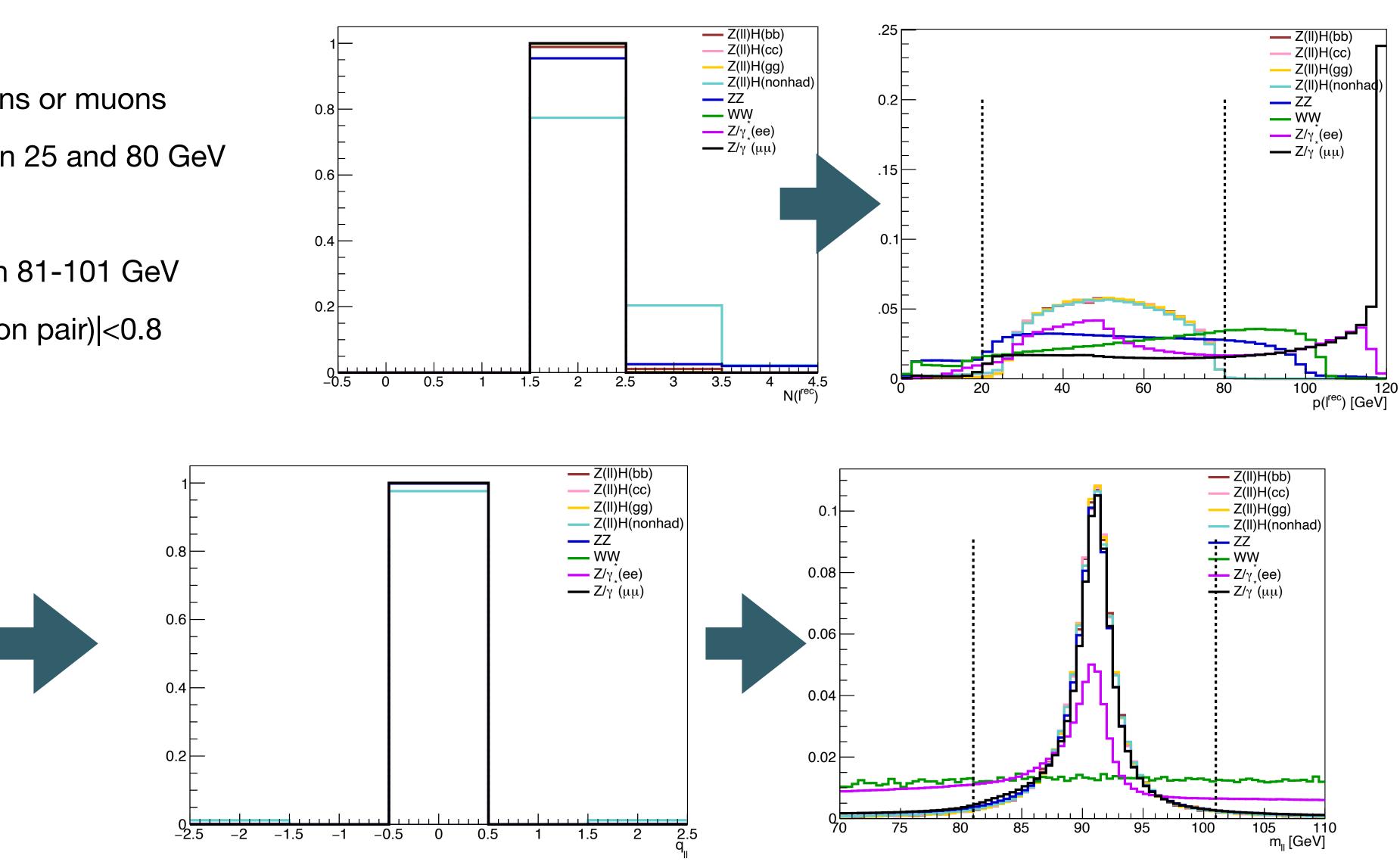
- For nominal analysis, use 80% efficiency working point for b, c, g tagging

• For alternative analyses, either vary efficiency for nominal fake rate or viceversa, or choose alternative WP (see next slide)

Jet flavour tagging (2)

• Flavour tagging scenarios considered:

Strategy	b-tag ɛb, ɛc, ɛl, ɛg	c-tag ɛb, ɛc, ɛl, ɛg	g-tag ɛ _b , ɛ _c , ɛ _l , ɛ _g
Nominal	80 / 0.4 / 0.05 / 0.7	2.0 / 80 / 0.9 / 2.5	2.0 / 5.0 / 15 / 80
Fake rates x2	80 / 0.8 / 0.1 / 1.4	4.0 / 80 / 1.8 / 5.0	4.0 / 10 / 30 / 80
Fake rates x5	80 / 2.0 / 0.25 / 3.5	10 / 80 / 4.5 / 12.5	10 / 25 / 75 / 80
Eff -10%	70 / 0.4 / 0.05 / 0.7	2.0 / 70 / 0.9 / 2.5	2.0 / 5.0 / 15 / 70
Eff -20%	60/0.4/0.05/0.7	2.0/60/0.9/2.5	2.0/5.0/15/ 60
WPc 90%	80/0.4/0.05/0.7	4.0 / 90 / 7.0 / 7.0	2.0/5.0/15/80
WPc 70%	80/0.4/0.05/0.7	0.9 / 70 / 0.2 / 1.0	2.0/5.0/15/80

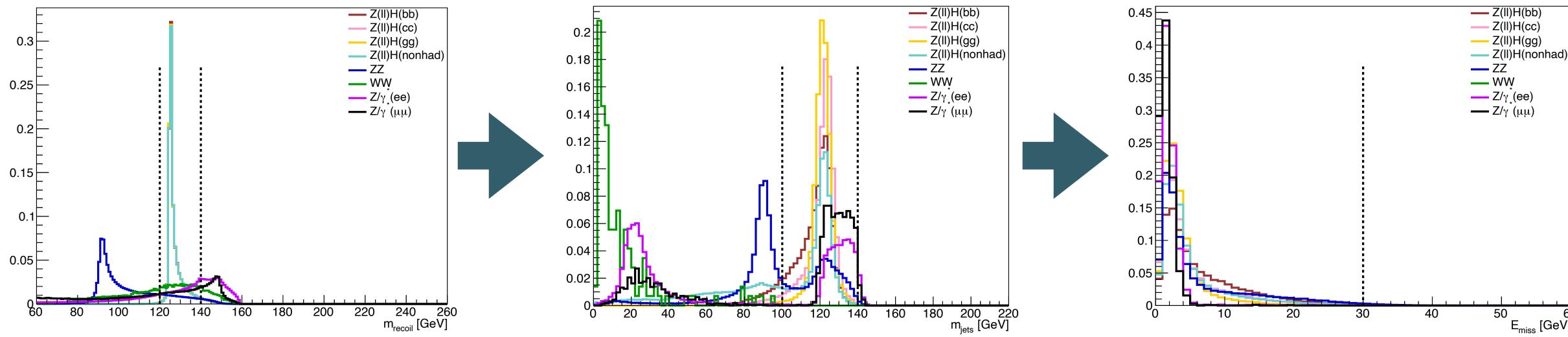

 For alternative WPs, we investigated the case of changir have the less precise measurement (see later)

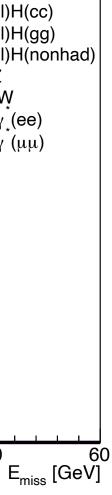
• For alternative WPs, we investigated the case of changing the c-tagging one since BR(cc) is the one which is projected to

Event selection

• Z->II selection:

- Exactly 2 isolated electrons or muons
- Lepton momenta between 25 and 80 GeV
- Q(II)=0
- Dilepton invariant mass in 81-101 GeV
- |cos(Polar angle of dilepton pair)|<0.8

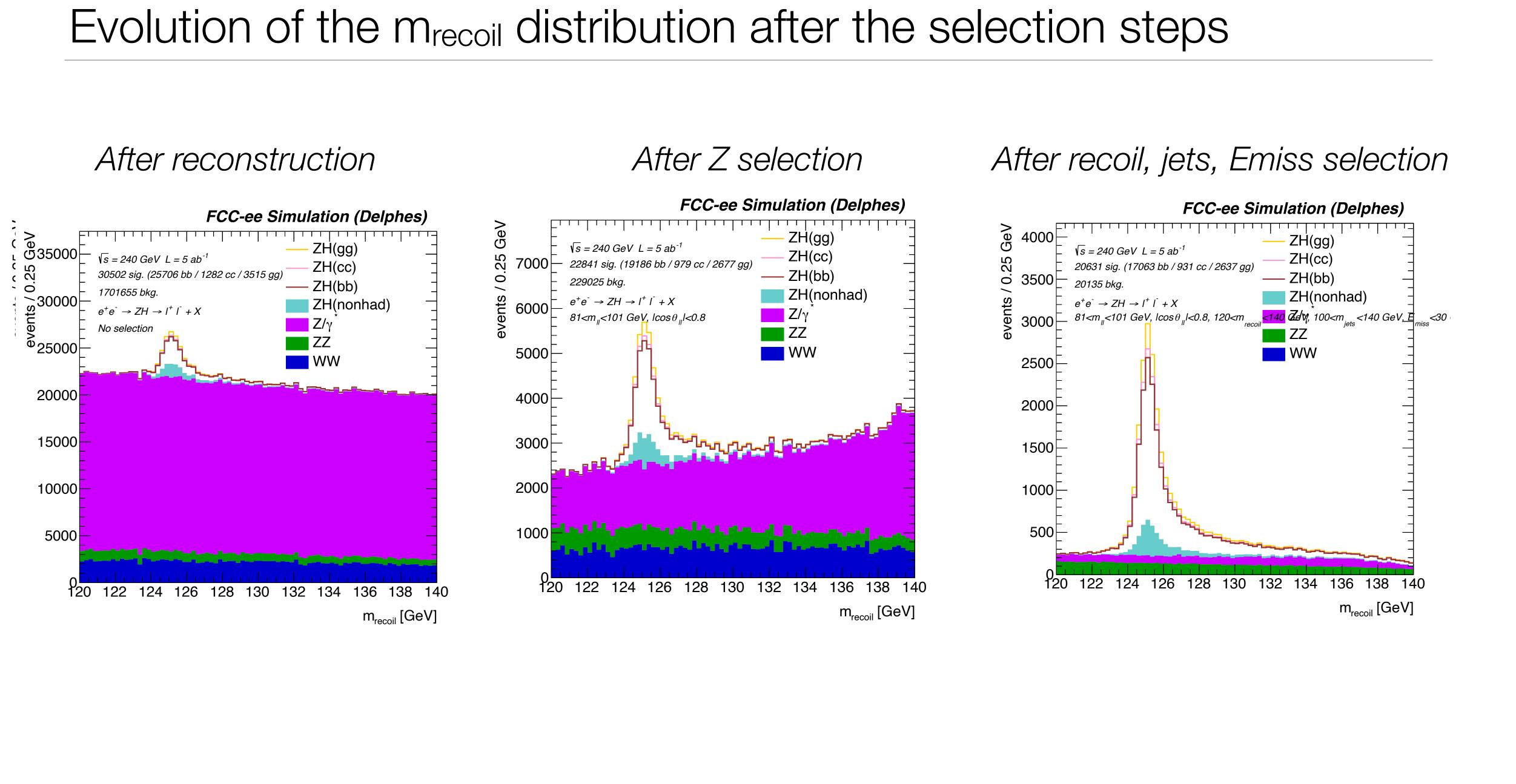



Hadronic Higgs BRs at FCC-ee with ZH - 22/11/2022

Event selection (2)

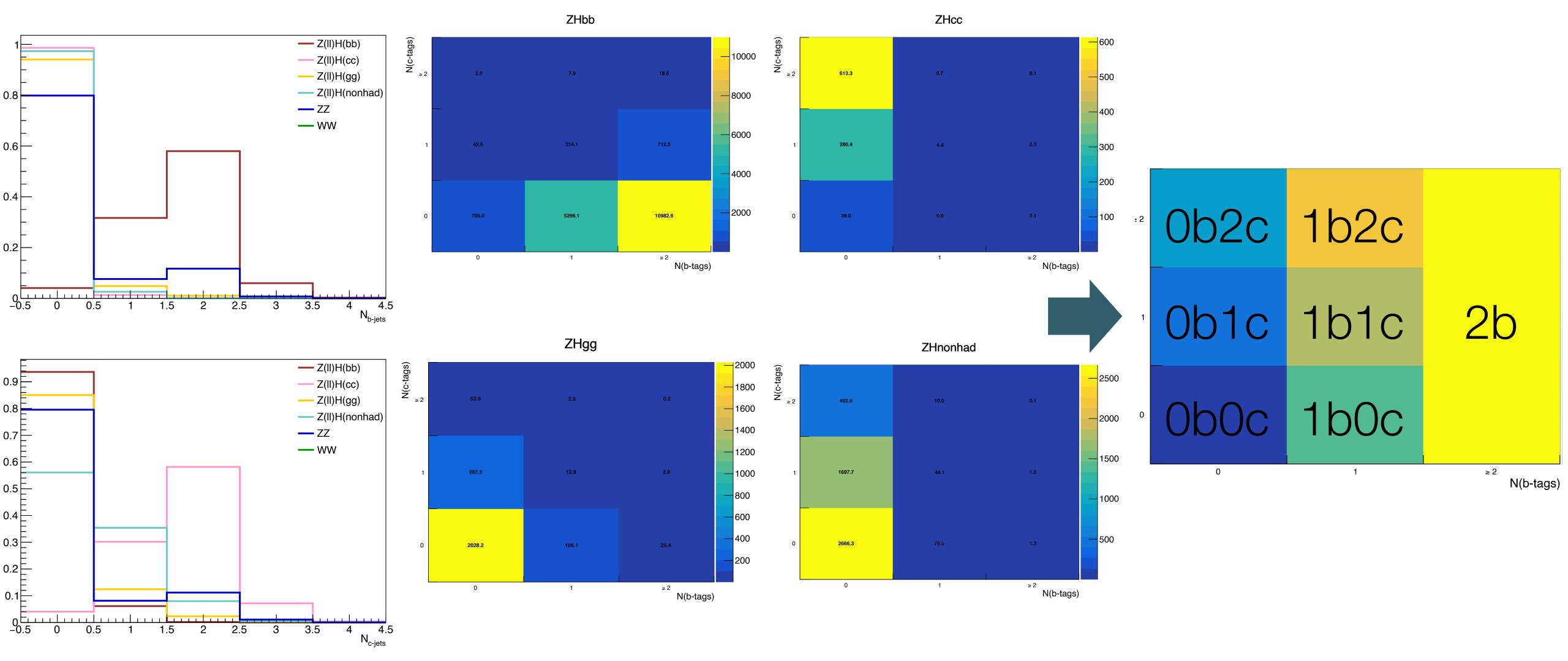
Recoil and jet selection:

- Recoil mass in 120-140 GeV
- Jet momentum in 10-100 GeV
- Hadronic mass in 100-140 GeV
- Missing energy < 30 GeV
 - Tighter cuts (15, 20 GeV) in gluonenriched and c-enriched categories


Cutflow, expected yields, efficiency

Cut	ZH Yie	bb ld Sig	ZHcc Yield		ZHgg Yield	Sig	ZHnonhad Yield	ZZ Yield	WW Yield	Z/y*(ee) Yield	Z/y*(mm)	Z/y*(qq)
No cuts	407	5	2023	2	5730	0	21470	6794950	82192500	41525000	26440000	263269500
2e or 2mu	270				3724	1	12375	871502	2130832	29524745	18699307	45888
No extra lep	267				3718	1	9573	831747	2128490	29524745	18699307	44940
p(lep) 25-80 GeV	261	24 8	1328	0	3646	1	9001	426207	700864	7172263	2633299	421
q(ll)=0	261	22 8	1328	0	3646	1	8785	425439	700683	7172263	2633299	421
m(ll) 81-101 GeV	244	63 11	1244	1	3417	1	8049	295892	170319	2732241	1989103	G
cos(theta_ll) <0.8	199	50 20	1017	1	2787	3	6593	187765	128845	440918	242606	G
m(recoil) 120-140 GeV	191	86 38	979	2	2677	5	6318	31090	53376	106466	31776	G
100 <m(jets)<140 gev<="" td=""><td>171</td><td>03 85</td><td>932</td><td>5</td><td>2637</td><td>13</td><td>3804</td><td>9397</td><td>Θ</td><td>6236</td><td>830</td><td>e</td></m(jets)<140>	171	03 85	932	5	2637	13	3804	9397	Θ	6236	830	e
Emiss < 30 GeV	170	63 85	931	5	2637	13	3796	9283	0	6226	830	e
per-category Emiss cuts	169	92 85	909	5	2593	13	3615	8377	0	6180	830	G
Efficiency (%)	ZHbb 41.70	ZHcc 44.95	ZHgg Z 45.25	Hnonhad 16.84	WW 0.00	Θ.		qq Ze 00 0.0				

2e or 2mu request leads to 65% efficiency despite very high lepton reconstruction efficiency due to isolation requirement inefficiency



Event categorisation

• Events are classified in mutually orthogonal categories based on the number of b-, c- and g-tags

Giovanni Marchiori

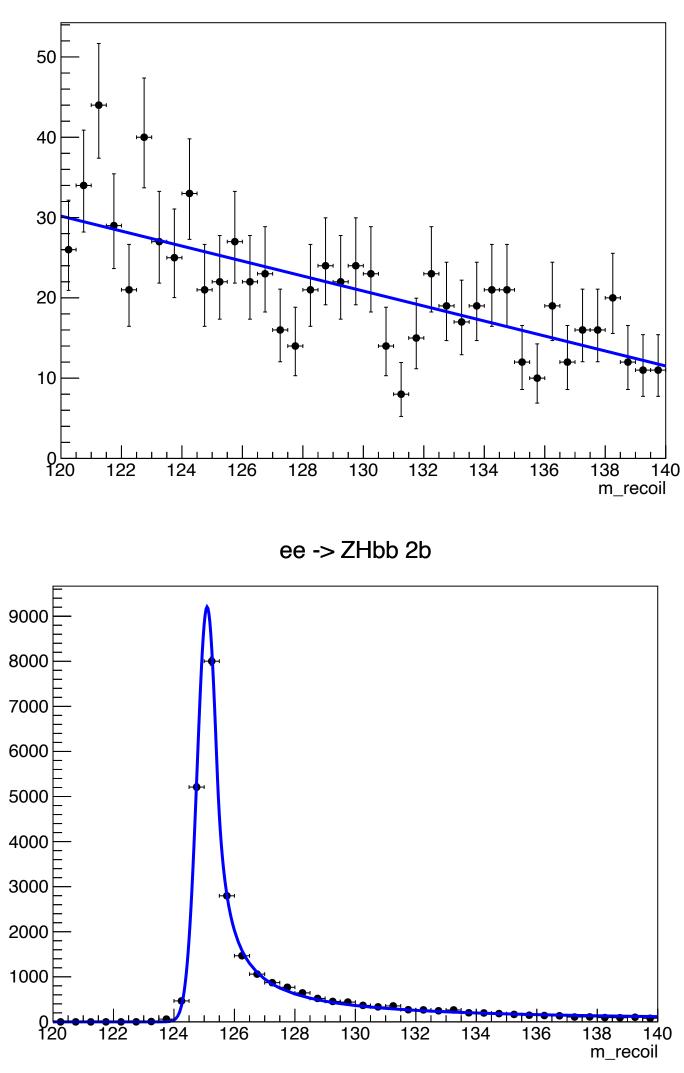
Event categorisation

< 2b tags) EXPECTED YIELDS (significances in parentheses)

	ZHbb	ZHcc	ZHgg	ZHnonhad	bkg
2b	10777 (100)	0 (0)	1 (0)	46 (0)	814
2c	2 (0)	577 (15)	2 (0)	66 (2)	799
1b1c	219 (13)	2 (0)	2 (0)	10 (1)	34
1b0c	5378 (69)	0 (0)	39 (0)	40 (1)	680
0b1c	33 (1)	292 (6)	131 (3)	1193 (24)	926
0b0c2g	4 (0)	1 (0)	1533 (34)	50 (1)	392
0b0c1g	60 (1)	5 (0)	781 (11)	574 (8)	3614
0b0c0g	518 (5)	31 (0)	103 (1)	1636 (16)	8129
Total	16992 (122)	909 (16)	2593 (36)	3615 (30)	15386

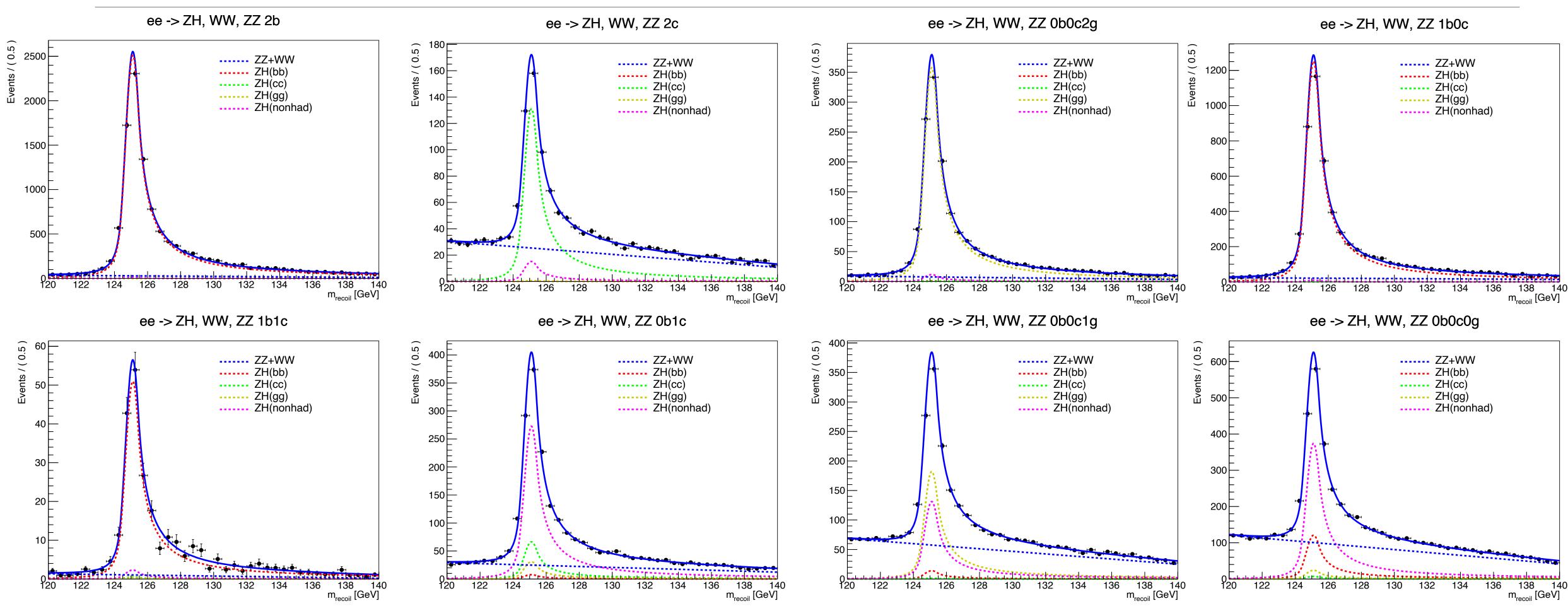
• Events are classified in mutually orthogonal categories based on the number of b-, c- and g-tags (2c category also requires

Fit - likelihood model


- Simultaneous S+B fit to the recoil mass of the event categories
- **Background** model: simple functions (**polynomials**, exponentials) with **floating** parameters in each category
- Signal model: double-sided Crystal Ball with same parameters in each category
 - peak position = mH + constant (checked with MC samples w/ different mH)
 - Tail parameters and peak-mH are fixed, **m_H and resolution are floating**
- Signal yield in each category = function of the efficiencies for the various Z(II)H(->XX)processes in each category (fixed, from simulation) and of $\sigma_{H}^{*}BR(H->XX)$:

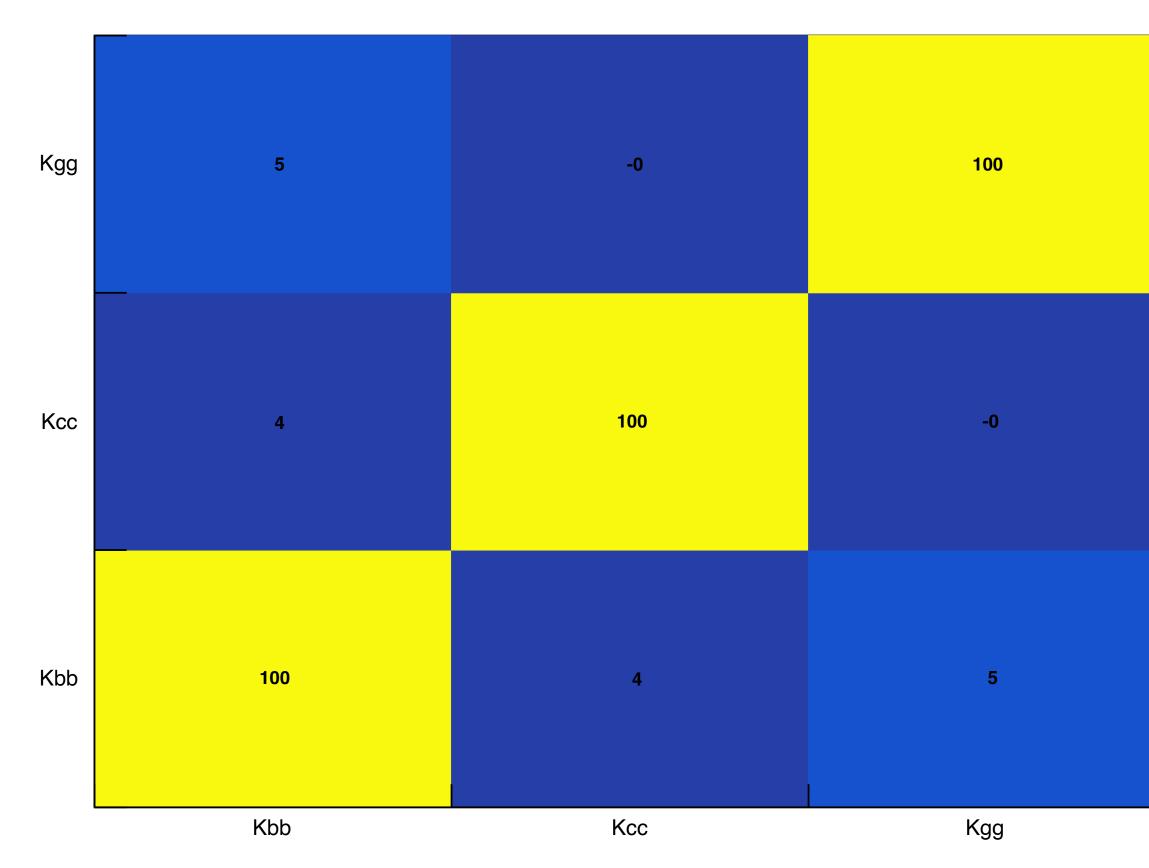
 $N_{i} = L \times \sigma(ee \to ZH) \times BR(Z \to ll) \times \left(BR(H \to b\overline{b})\epsilon_{i}^{b\overline{b}} + BR(H \to c\overline{c})\epsilon_{i}^{c\overline{c}} + BR($

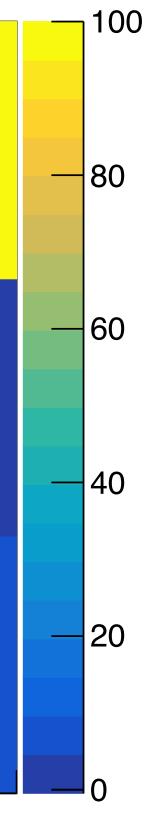
- In fit, σ*BR(H->XX) = (σ*BR(H->XX))_{SM}*K_{XX} => parameters of interest = {K_{XX}}
- Fit the output of the simulation (not an Asimov sample generated from the nominal models) => statistical deviations from expected values $k_{XX}=1$ are expected
- The fit is binned, in the m_{recoil} range 120-140 GeV
- Non-hadronic BR is fixed to SM prediction (assume to measure it precisely with other channels) - though some constraining power from 0b0c0g category


ee -> ZZ 2b

$$(H \to gg)\epsilon_i^{gg} + BR(H \to nonhad)\epsilon_i^{nh}$$
.

Results - nominal selection

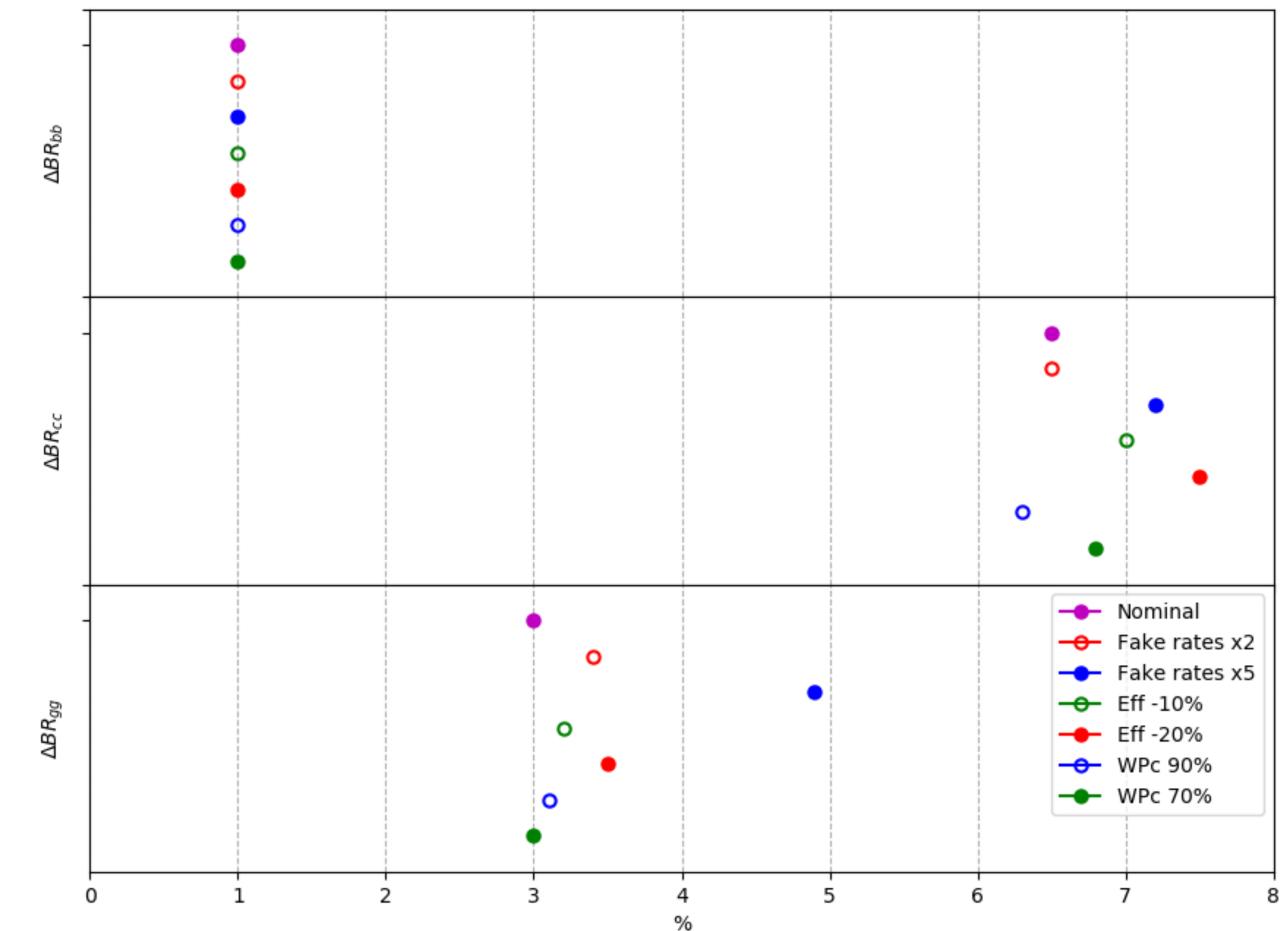

Results - nominal selection


Floating Parameter	InitialValue	FinalValue +/-	Error	GblCorr.
Kbb Kcc Kgg Yield_ObOcOg_bkg Yield_ObOc1g_bkg Yield_ObOc2g_bkg Yield_Ob1c_bkg Yield_1b0c_bkg Yield_1b1c_bkg Yield_2b_bkg Yield_2c_bkg mH p0_ObOcOg p0_ObOc0g	InitialValue 1.0000e+00 1.0000e+00 1.0000e+00 3.1857e+03 1.8346e+03 2.4100e+02 7.9846e+02 6.7222e+02 3.3634e+01 8.1358e+02 7.9755e+02 1.2500e+02 1.2500e+03 5.0000e+03	FinalValue +/- 1.0186e+00 +/- 9.9378e-01 +/- 1.0209e+00 +/- 3.2476e+03 +/- 1.8739e+03 +/- 2.4876e+02 +/- 8.2776e+02 +/- 3.0585e+01 +/- 9.1335e+02 +/- 8.2300e+02 +/- 1.2499e+02 +/- 2.9092e+00 +/- 2.7340e+00 +/-	Error 1.04e-02 6.45e-02 3.05e-02 6.79e+01 5.34e+01 3.28e+01 4.07e+01 5.66e+01 1.06e+01 8.16e+01 8.16e+01 5.79e-03 2.41e-01 2.91e-01	GblCorr. <none> <none> <none> <none> <none> <none> <none> <none> <none> <none> <none> <none> <none> <none> <none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none>
p0_0b0c2g	5.0000e+03	2.6256e+00 +/-	3.49e-01	<none></none>
p0_0b1c	5.0000e+03	2.3736e+00 +/-		<none></none>
p0_1b0c	5.0000e+03	1.6573e+00 +/-		<none></none>
p0_1b0c	5.0000e+03	1.6573e+00 +/-	3.49e-01	
p0_1b1c	5.0000e+03	7.0104e+00 +/-	1.67e+01	
p0_2b	5.0000e+03	3.3001e+00 +/-	1.01e+00	
p0_2c	5.0000e+03	2.8467e+00 +/-	4.65e-01	<none></none>
sigma	4.7100e-01	4.4326e-01 +/-	7.95e-03	<none></none>

- Relative error on Kbb: 1.0%
- Relative error on Kcc: 6.5%
- Relative error on Kgg: 3.0% (3.1% when including also Z/y* bkg not included in next slides)
- Relative error on Knonhad: 0.0% fixed (3.4% when floating leads to increase of Kcc uncertainty to 6.8%)

Giovanni Marchiori

Results with various tagging performance/WP scenarios


Strategy	ΔBR _{bb} (rel., %)	ΔBR _{cc} (rel., %)	ΔBR _{gg} (rel., %)
Nominal	1.0	6.5	3.0
Fake rates x2	1.0	6.5	3.4
Fake rates x5	1.0	7.2	4.9
Eff -10%	1.0	7.0	3.2
Eff -20%	1.0	7.5	3.5
WPc 90%	1.0	6.3	3.1
WPc 70%	1.0	6.8	3.0

- measurement typically O(15%), with 50% for BR_{gg} in very extreme case of x5 u<->g fake rate
- few% improvement on BRcc (but slightly worse BRgg) when going to higher-eff WP for c-tagging

• Worse fake rate or efficiency do not affect significantly BR_{bb} thanks to large yield and purity, but can degrade B_{cc} and BR_{gg}

Results with various tagging performance/WP scenarios

- measurement typically O(15%), with 50% for BR_{gg} in very extreme case of x5 u<->g fake rate
- few% improvement on BRcc (but slightly worse BRgg) when going to higher-eff WP for c-tagging

Giovanni Marchiori

Hadronic Higgs BRs at FCC-ee with ZH - 22/11/2022

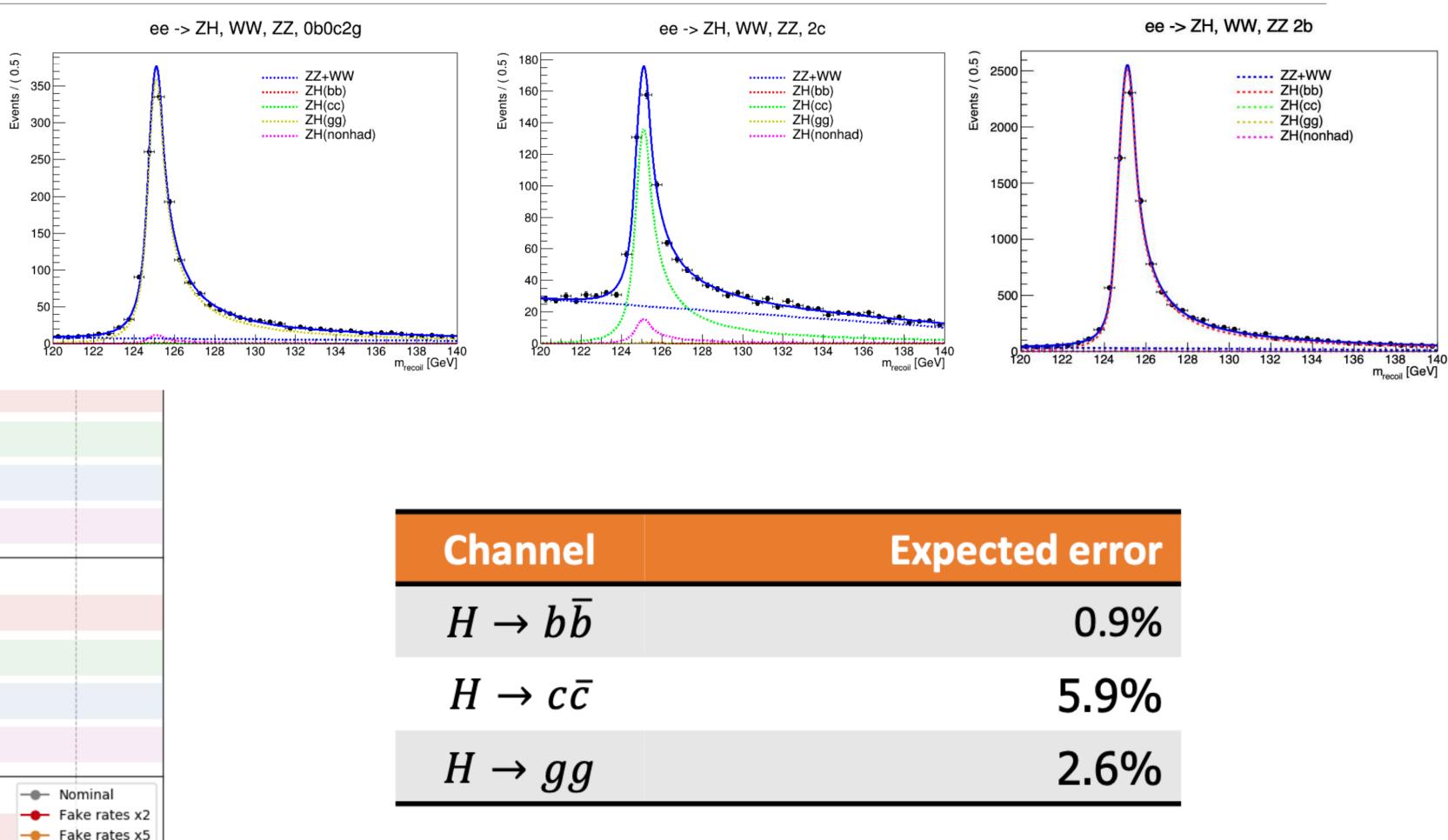
Relative errors different scenarios

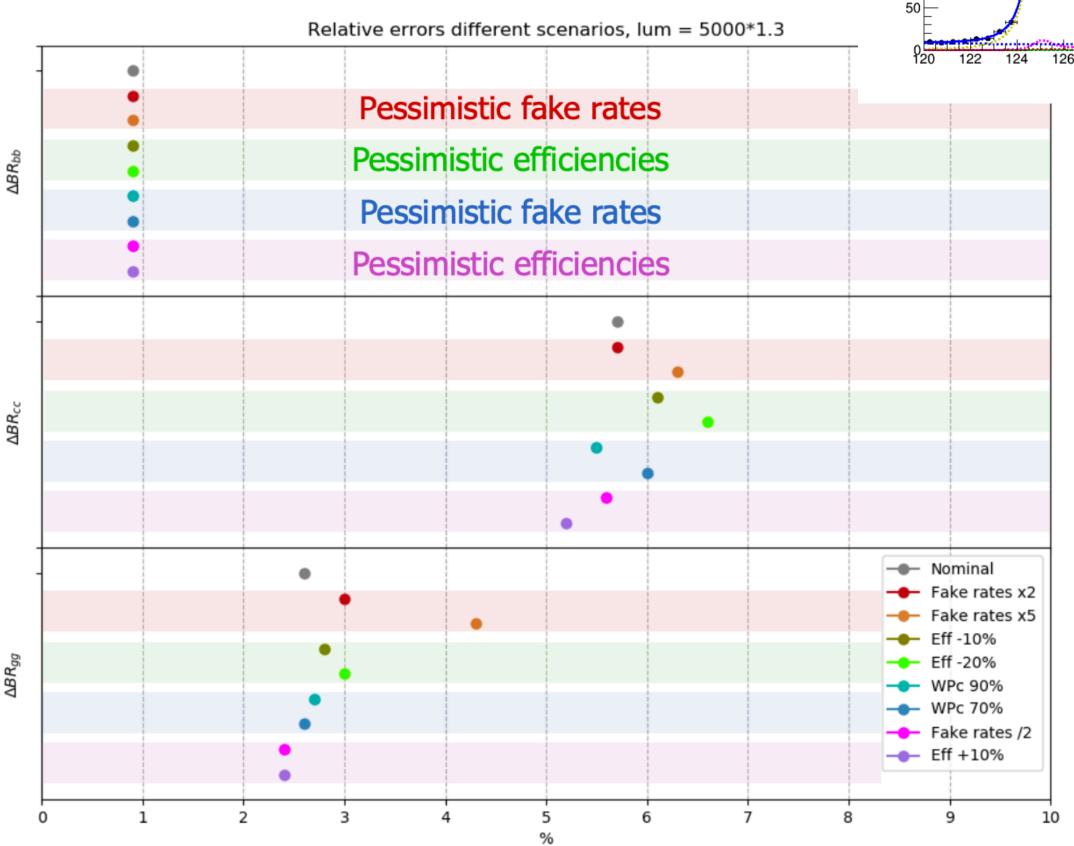
• Worse fake rate or efficiency do not affect significantly BR_{bb} thanks to large yield and purity, but can degrade B_{cc} and BR_{gg}

Using non isolated leptons

for both signal and (main) bkg (~40% for ee and ~15% for mumu channels):

Z(ee)	ZH _{bb} (%)	ZH _{cc} (%)	ZH _{gg} (%)	ZH _{other} (%)
Isolated leptons	36.7	39.1	38.3	14.3
No iso requirement	51.3	55.3	54.5	22.4
ratio	1.40	1.41	1.42	1.57
Z(mumu)	ZH _{bb} (%)	ZH _{cc} (%)	ZH _{gg} (%)	ZH _{other} (%)
Isolated leptons	48.0	51.5	52.4	19.7
No iso requirement	54.5	59.5	59.2	24.1

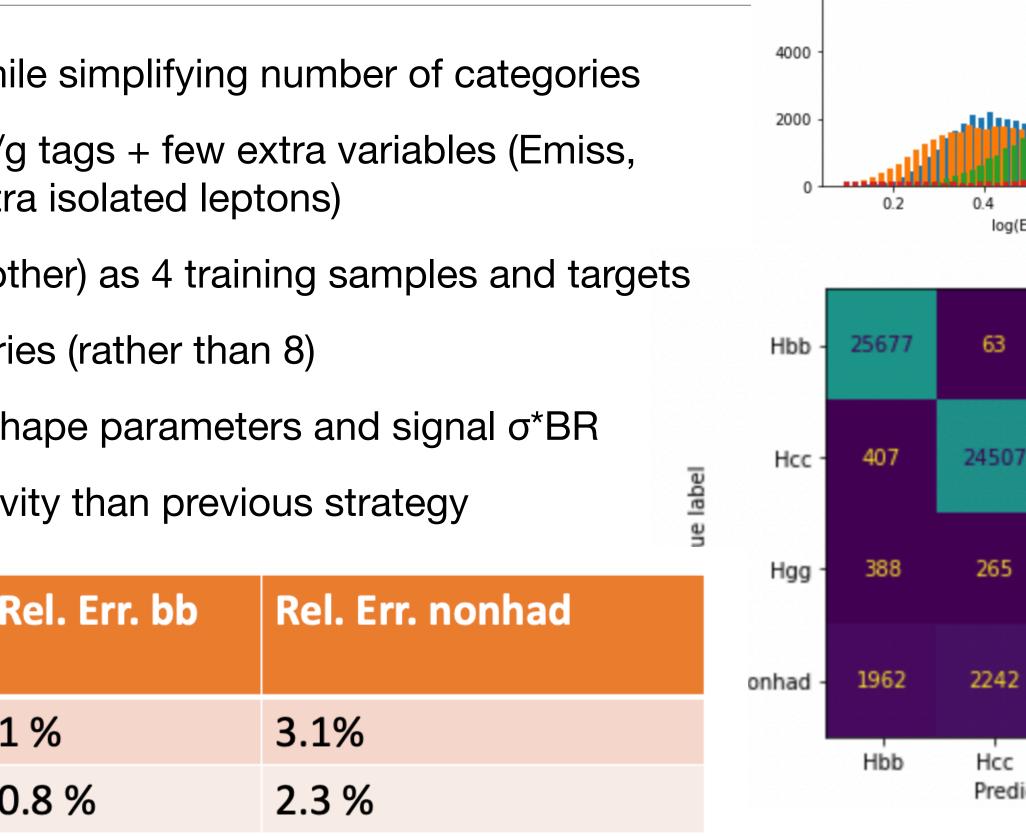

Z(ee)	ZH _{bb} (%)	ZH _{cc} (%)	ZH _{gg} (%)	ZH _{other} (%)
Isolated leptons	36.7	39.1	38.3	14.3
No iso requirement	51.3	55.3	54.5	22.4
ratio	1.40	1.41	1.42	1.57
Z(mumu)	ZH _{bb} (%)	ZH _{cc} (%)	ZH _{gg} (%)	ZH _{other} (%)
Z(mumu) Isolated leptons	ZH _{bb} (%) 48.0	ZH _{cc} (%) 51.5	ZH _{gg} (%) 52.4	ZH _{other} (%) 19.7

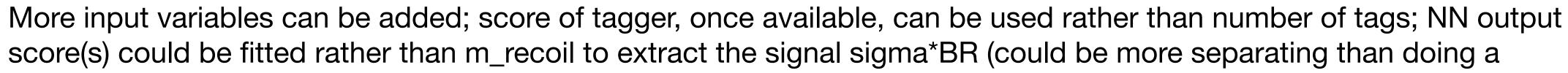

• Regenerating signals and main (WW, ZZ) bkg and saving non isolated electrons and leptons, we found an overall increase in efficiency of 30%

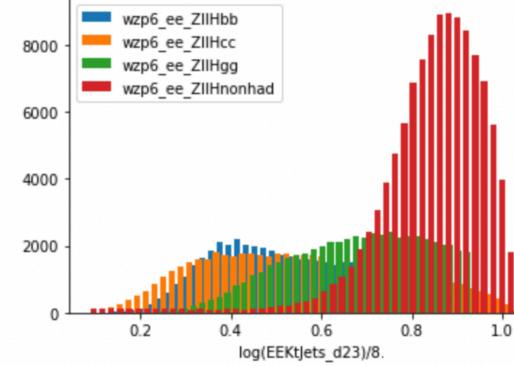
Using non isolated leptons

• Rescaling the signal and background by an overall factor 1.3 we arrive to new estimates of the expected yields and BR sensitivities:

Channel	Expected error
$H \rightarrow b \overline{b}$	0.9%
$H \to c \bar{c}$	5.9%
$H \rightarrow gg$	2.6%




Further improvements


- Improve classification strategy: increase accuracy while simplifying number of categories
 - Use deep neural network based on number of b/c/g tags + few extra variables (Emiss, d_23 from last step of jet clustering, number of extra isolated leptons)
- Train multi-class NN with Z(II) + H(bb)/H(cc)/H(gg)/H(other) as 4 training samples and targets
- Use output label of NN to classify events in 4 categories (rather than 8)
- Same fit strategy as before to determine bkg yields/shape parameters and signal σ^*BR
- *Preliminary* results show similar or even better sensitivity than previous strategy

Categories	Rel. Err. cc	Rel. Err. gg	Rel.
8 tags	6.3 %	2.8 %	1%
4 tags (NN)	4.8 %	2.5 %	0.8

m_recoil fit in NN categories)

63

265

2242

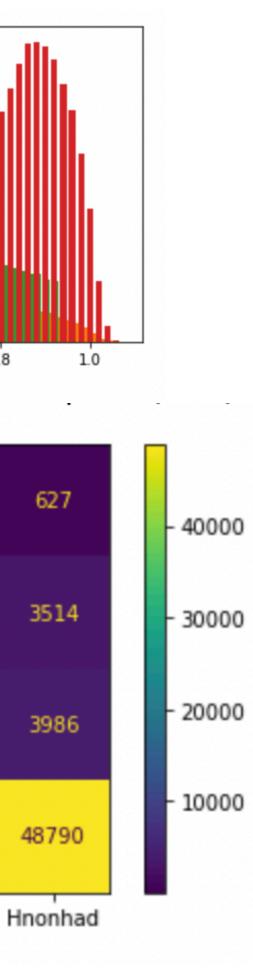
Hcc

47

143

25456

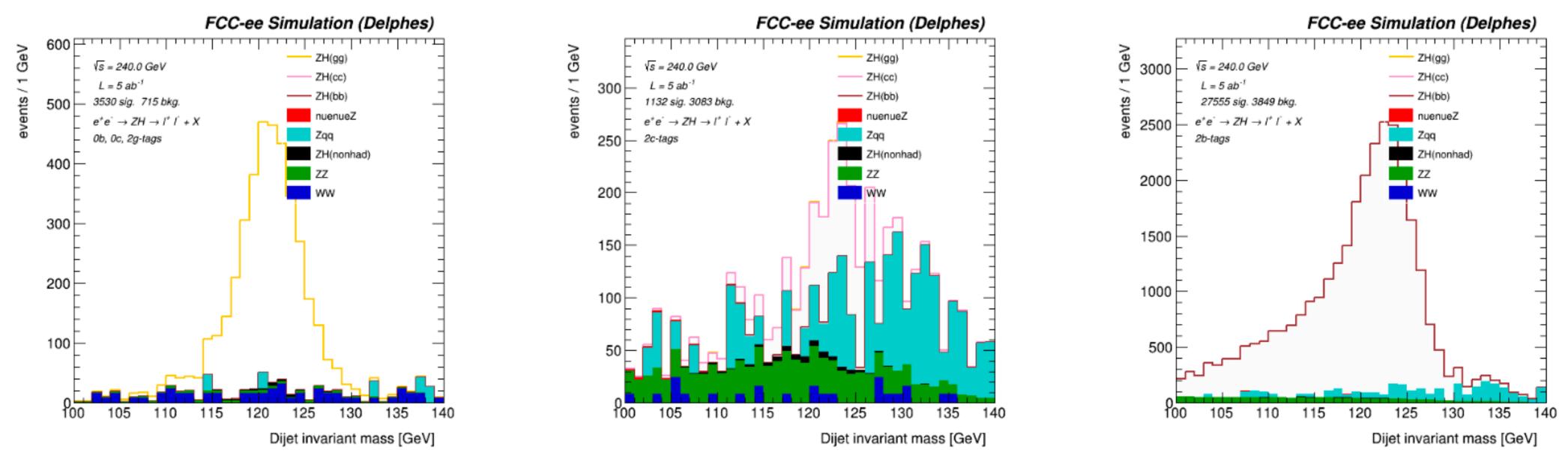
4058


Hgg

Predicted label

627

3514


3986

Outlook on ongoing and future activities

- Ongoing:
 - Migrate analysis to latest FCCAnalysis version (~done)
 - Split ee/mumu categories (different S/B) (~done)
 - details of event generation / parton shower in different samples used for training vs analysis)

• Include output of ParticleNet as input to NN (tagger found to perform worse than in Michele's studies, debugging with Michele, couple of bugs already found plus possibly also some differences induced by different clustering algorithm and

• Analysis of Z(nunu)H(qq) channel (selection/categorisation in place, working on implementation of fit procedure)

• Writing an internal supporting document to describe all these activities (started before summer break, ongoing)

Outlook on ongoing and future activities

- Ideas for the farther future:
 - sigma*BR
 - Look at Z(had)H(qq/gg)
 - Look at sqrt(s)=365 GeV
 - Fit NN output with templates rather than fit of m_recoil distribution with analytic models
 - Include in global combination with "measurements" of other decay channels

• Include also H(ss) (and maybe also H(tau_had tau_had) in the analysis as target processes for which to measure

Backup

CEPC projections

• CEPCv1 (5.6/ab at 250 GeV, B=3.5T)

Z decay mode	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$
$Z \! ightarrow e^+ e^-$	1.3%	12.8%	6.8%
$Z{ m \rightarrow}\mu^+\mu^-$	1.0%	9.4%	4.9%
$Z \! ightarrow \! q \bar{q}$	0.5%	10.6%	3.5%
$Z \rightarrow \nu \bar{\nu}$	0.4%	3.7%	1.4%
Combination	0.3%	3.1%	1.2%

~5% worse results for CEPCv4 vs v1

• CEPCv1 vs CEPCv4 (5.6/ab at 240 GeV, B=3T)

	Estimated Precision			
Property	CEH	PC-v1	CEP	PC-v4
m_H	5.9	MeV	5.9	${ m MeV}$
Γ_H	2.	7%	2.3	8%
$\sigma(ZH)$	0.	5%	0.	5%
$\sigma(u ar{ u} H)$	3.	0%	3.1	2%
D		DD		חת
Decay mode	$\sigma \times BR$	BR	$\sigma \times BR$	BR
$H \rightarrow b \bar{b}$	0.26%	0.56%	0.27%	0.56%
$H \rightarrow c\bar{c}$	3.1%	3.1%	3.3%	3.3%
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%
$H \! \rightarrow \! WW^*$	0.9%	1.1%	1.0%	1.1%
$H\!\rightarrow\! ZZ^*$	4.9%	5.0%	5.1%	5.1%
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%
$H \rightarrow Z \gamma$	13%	13%	16%	16%
$H\!\rightarrow\!\tau^{+}\tau^{-}$	0.8%	0.9%	0.8%	1.0%
$H{ o}\mu^+\mu^-$	16%	16%	17%	17%
${ m BR}^{ m BSM}_{ m inv}$	_	$<\!0.28\%$	_	< 0.30%

FCCee CDR projections

are displayed in the last columns

\sqrt{s} (GeV)	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}$ H	HZ	$\nu\overline{\nu}$ H
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \rightarrow c \bar{c}$	± 2.2		± 6.5	± 10
$H \rightarrow gg$	± 1.9		± 3.5	± 4.5
${ m H} ightarrow { m W}^+ { m W}^-$	± 1.2		± 2.6	± 3.0
$H \rightarrow ZZ$	± 4.4		± 12	± 10
$H \to \tau \tau$	± 0.9		± 1.8	± 8
$H\to\gamma\gamma$	± 9.0		± 18	± 22
$H \to \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invis.$	< 0.3		< 0.6	

Table 4.1 Relative statistical uncertainty on the measurements of event rates, providing $\sigma_{HZ} \times BR(H \rightarrow XX)$ and $\sigma_{\nu\bar{\nu}H} \times BR(H \rightarrow XX)$, as expected from the FCC-ee data. This is obtained from a fast simulation of the CLD detector and consolidated with extrapolations from full simulations of similar linear-collider detectors (SiD and CLIC). All numbers indicate 68% C.L. intervals, except for the 95% C.L. sensitivity in the last line. The accuracies expected with 5 ab⁻¹ at 240 GeV are given in the middle columns, and those expected with 1.5 ab⁻¹ at $\sqrt{s} = 365$ GeV

Projections in FCC CDR

Higgs decay mode	Rel. unc. on σBR(bb) (%)
bb	0.8
CC	5.3
gg	6.1

* Considering only background from ZZ and WW (background from ZH with other Higgs decays not considered)

• Assuming 5/ab at 240 GeV, the projected sensitivities at FCC-ee in the CDR (Eur. Phys. J. C 79, 474 (2019), Table 4.1) scaled to the Z(II) channel alone (taking Z(II)H/Z(II+qq+vv)H from Table 6 of CEPC, https://arxiv.org/pdf/1810.09037.pdf):

